Fast-growing hybrids do not decrease understorey plant diversity compared to naturally regenerated forests and native plantations

  • Samuel Royer-Tardif
  • Alain Paquette
  • Christian Messier
  • Philippe Bournival
  • David Rivest
Original Paper
  • 52 Downloads
Part of the following topical collections:
  1. Forest and plantation biodiversity

Abstract

Plantations of fast-growing hybrid trees, such as hybrid poplars and hybrid larch, are increasingly used for wood and timber production, but they are also believed to impair forest biodiversity. Most studies that have assessed how such plantations may alter the diversity and composition of understorey plants were established in agricultural landscapes or have compared tree plantations with old-growth natural forests. Moreover, many important aspects of biodiversity have been overlooked in previous studies, such as functional and beta-diversity. Here, we present results from a study that was aimed at quantifying alpha- and beta-diversity of understorey plant species and functional groups in hybrid poplar (9–10 years) and hybrid larch plantations (16 years) located within a forested landscape of Quebec, Canada. These hybrid plantations were compared to naturally regenerated secondary forests and to native plantations of black spruce of the same origin (clear cut) and similar age. Our results indicate that fast-growing hybrid plantations do not present lower taxonomic and functional alpha-biodiversity indices, but may harbour more diverse communities, in part through the introduction of plant species that are associated with open habitats. We provide further evidence that planted forests may be as heterogeneous as naturally regenerated forests in terms of understorey plant composition. Plant species and functional composition differed slightly between stand types (naturally regenerated forests, native and fast-growing hybrid plantations), with plantations offering a greater potential for colonisation by ruderal species, while being detrimental to species of closed forest habitats. Lastly, plantations of fast-growing hybrids do not induce greater changes in understorey vegetation relative to native plantations of black spruce, at least during the first stand rotation.

Keywords

Hybrid poplar Hybrid larch Understorey vegetation Functional diversity Beta-diversity Community composition TRIAD-functional zoning 

Notes

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Collaborative Research and Development (CRD) grant awarded to C.Messier, with the collaboration of Resolute Forest Products (Nadyre Beaulieu, La Tuque, Qc). S. Royer-Tardif was awarded a postdoctoral scholarship from NSERC’s CREATE Forest Complexity Modelling program. We also thank Pierre Boudreau (Rexforêt, Shawinigan, Qc) and Robert Allard (Gestion forestière du Saint-Maurice, La Tuque, Qc) for providing valuable information concerning the history of the plantations. Special thanks are due to Patrice Bergeron and the Ville de La Tuque (Qc) for their contributions and support during fieldwork. We are grateful to Philippe Couturier, Alba Oliver, Bernat Pagès, Justine Fontaine-Topaloff and Emilie Roy for their assistance during field work. We also acknowledge the valuable contribution of William F.J. Parsons for language revision and to two anonymous reviewers would significantly contributed to improve this manuscript.

Supplementary material

10531_2017_1452_MOESM1_ESM.pdf (321 kb)
Supplementary material 1 (PDF 320 kb)
10531_2017_1452_MOESM2_ESM.xlsx (32 kb)
Supplementary material 2 (XLSX 32 kb)
10531_2017_1452_MOESM3_ESM.doc (24 kb)
Supplementary material 3 (DOC 23 kb)

References

  1. Alvarez E, Belanger L, Archambault L, Raulier F (2011) Preindustrial portrait in a natural grand variability context: a case study in the Quebec center (Canada). For Chron 87:612–624CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070ppx Google Scholar
  3. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x CrossRefPubMedGoogle Scholar
  4. Anderson MJ et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi:10.1111/j.1461-0248.2010.01552.x CrossRefPubMedGoogle Scholar
  5. Archaux F, Chevalier R, Berthelot A (2010) Towards practices favourable to plant diversity in hybrid poplar plantations. For Ecol Manag 259:2410–2417. doi:10.1016/j.foreco.2010.03.017 CrossRefGoogle Scholar
  6. Aubin I, Gachet S, Messier C, Bouchard A (2007) How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience 14:259–271. doi:10.2980/1195-6860(2007)14[259:hranhf]2.0.co;2Google Scholar
  7. Aubin I, Messier C, Bouchard A (2008) Can plantations develop understory biological and physical attributes of naturally regenerated forests? Biol Conserv 141:2461–2476. doi:10.1016/j.biocon.2008.07.007 CrossRefGoogle Scholar
  8. Aubin I, Deshaies O, Cardou F, Sirois L (2014) Management legacy in the understory of North American mixed boreal regenerating stands. For Ecol Manag 320:129–137. doi:10.1016/j.foreco.2014.02.001 CrossRefGoogle Scholar
  9. Aubin I et al (2016) Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ Rev 24:164–186. doi:10.1139/er-2015-0072 CrossRefGoogle Scholar
  10. Bachelot B (2016) Sky: Canopy Openness Analyzer Package. R package version 1.0. https://CRAN.R-project.org/package=Sky
  11. Balandier P, Collet C, Miller JH, Reynolds PE, Zedaker SM (2006) Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79:3–27. doi:10.1093/forestry/cpi056 CrossRefGoogle Scholar
  12. Barrette M et al (2014) Issues and solutions for intensive plantation silviculture in a context of ecosystem management. For Chron 90:748–762CrossRefGoogle Scholar
  13. Barsoum N, Coote L, Eycott AE, Fuller L, Kiewitt A, Davies RG (2016) Diversity, functional structure and functional redundancy of woodland plant communities: how do mixed tree species plantations compare with monocultures? For Ecol Manag 382:244–256. doi:10.1016/j.foreco.2016.10.005 CrossRefGoogle Scholar
  14. Bilodeau-Gauthier S, Pare D, Messier C, Belanger N (2013) Root production of hybrid poplars and nitrogen mineralization improve following mounding of boreal Podzols. Can J For Res 43:1092–1103. doi:10.1139/cjfr-2013-0338 CrossRefGoogle Scholar
  15. Boothroyd-Roberts K, Gagnon D, Truax B (2013) Can hybrid poplar plantations accelerate the restoration of forest understory attributes on abandoned fields? For Ecol Manag 287:77–89. doi:10.1016/j.foreco.2012.09.021 CrossRefGoogle Scholar
  16. Boyd RS, Freeman JD, Miller JH, Edwards MB (1995) Forest herbicide influences on floristic diversity 7 years after broadcast pine release treatments in central Georgia, USA. New For 10:17–37. doi:10.1007/bf00034174 Google Scholar
  17. Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915. doi:10.1007/s10531-010-9936-4 CrossRefGoogle Scholar
  18. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951. doi:10.1007/s10531-008-9380-x CrossRefGoogle Scholar
  19. Brouillet L, Coursol F, Meades S, Favreau M, Anions M, Bélisle P, Desmet P (2010) VASCAN, the Database of Vascular Plants of Canada. http://data.canadensys.net/vascan/. Accessed 14 Dec 2016
  20. Chang W (2012) R Graphics Cookbook. O’Reilly Media Inc, SebastopolGoogle Scholar
  21. Chaudhary A, Burivalova Z, Koh LP, Hellweg S (2016) Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci Rep 6:10. doi:10.1038/srep23954 CrossRefGoogle Scholar
  22. Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14:1765–1778. doi:10.1007/s10530-012-0202-4 CrossRefGoogle Scholar
  23. Ekö PM, Stern ML, Albrektson A (2004) Growth and yield of hybrid Larch (Larix × eurolepis A. Henry) in Southern Sweden. Scand J Forest Res 19:320–328. doi:10.1080/02827580410024151 CrossRefGoogle Scholar
  24. Environment Canada (2016) Canadian Climate Normals: 1981-2010 Climate Normals & Averages. http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed 4 Dec 2016
  25. Fischer J et al (2008) Should agricultural policies encourage land sparing or wildlife-friendly farming? Front Ecol Environ 6:382–387. doi:10.1890/070019 CrossRefGoogle Scholar
  26. Forest Stewardship Council FSC Canada (2010) FSC Forest Stewardship Standard Great Lakes St. Lawrence Region. DRAFT (3.0)Google Scholar
  27. Fork S et al (2015) Biodiversity effects and rates of spread of nonnative eucalypt woodlands in central California. Ecol Appl 25:2306–2319. doi:10.1890/14-1943.1.sm CrossRefPubMedGoogle Scholar
  28. Fortier J, Messier C (2006) Are chemical or mechanical treatments more sustainable for forest vegetation management in the context of the TRIAD? For Chron 82:806–818. doi:10.5558/tfc82806-6 CrossRefGoogle Scholar
  29. Fortier J, Truax B, Gagnon D, Lambert F (2016) Potential for hybrid poplar Riparian buffers to provide ecosystem services in three watersheds with contrasting agricultural land use. Forests. doi:10.3390/f7020037 Google Scholar
  30. Frey BR, Lieffers VJ, Landhausser SM, Comeau PG, Greenway KJ (2003) An analysis of sucker regeneration of trembling aspen. Can J Forest Res 33:1169–1179CrossRefGoogle Scholar
  31. Haeussler S, Bedford L, Leduc A, Bergeron Y, Kranabetter JM (2002) Silvicultural disturbance severity and plant communities of the southern Canadian boreal forest. Silva Fenn 36:307–327. doi:10.14214/sf.565 CrossRefGoogle Scholar
  32. Halpern CB, Spies TA (1995) Plant-species diversity in natural and managed forests of the Pacific-Northwest. Ecol Appl 5:913–934. doi:10.2307/2269343 CrossRefGoogle Scholar
  33. Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95. doi:10.1016/s0378-1127(01)00549-7 CrossRefGoogle Scholar
  34. Hartmann H, Daoust G, Bigue B, Messier C (2010) Negative or positive effects of plantation and intensive forestry on biodiversity: a matter of scale and perspective. For Chron 86:354–364CrossRefGoogle Scholar
  35. Jost L (2006) Entropy and diversity. Oikos 113:363–375. doi:10.1111/j.2006.0030-1299.14714.x CrossRefGoogle Scholar
  36. Kessler M et al (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol Appl 19:2142–2156. doi:10.1890/08-1074.1 CrossRefPubMedGoogle Scholar
  37. Kroetsch D, Wang C (2007) Particle size distribution. In: Carter MR (ed) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton. doi:10.1201/9781420005271.ch55 Google Scholar
  38. Laliberte E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12Google Scholar
  39. Legendre P, Legendre L (2012) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  40. Lindenmayer D, Messier C, Paquette A, Hobbs RJ (2015) Managing tree plantations as novel socioecological systems: Australian and North American perspectives. Can J For Res 45:1427–1433. doi:10.1139/cjfr-2015-0072 CrossRefGoogle Scholar
  41. Mang SL, Brodie JF (2015) Impacts of non-oil tree plantations on biodiversity in Southeast Asia. Biodivers Conserv 24:3431–3447. doi:10.1007/s10531-015-1022-5 CrossRefGoogle Scholar
  42. Marie-Victorin, Brouillet L, Rouleau E, Goulet I, Hay SG (2002) Flore laurentienne. 3e éd. mise à jour et annotée edn. G. Morin, BouchervilleGoogle Scholar
  43. Martin-Garcia J, Jactel H, Oria-de-Rueda JA, Diez JJ (2016) The effects of poplar plantations on vascular plant diversity in Riparian landscapes. Forests 7:14. doi:10.3390/f7030050 CrossRefGoogle Scholar
  44. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30:104–113. doi:10.1016/j.tree.2014.11.006 CrossRefPubMedGoogle Scholar
  45. Meirmans PG, Gros-Louis MC, Lamothe M, Perron M, Bousquet J, Isabel N (2014) Rates of spontaneous hybridization and hybrid recruitment in co-existing exotic and native mature larch populations. Tree Genet Genom 10:965–975. doi:10.1007/s11295-014-0735-z CrossRefGoogle Scholar
  46. Messier C, Bigué B, Bernier L (2003) Using fast-growing plantations to promote forest ecosystem protection in Canada. Unasylva 54:59–63Google Scholar
  47. Messier C et al (2009) TRIAD zoning in Quebec: experiences and results after 5 years. For Chron 85:885–896CrossRefGoogle Scholar
  48. Miller JH, Boyd RS, Edwards MB (1999) Floristic diversity, stand structure, and composition 11 years after herbicide site preparation. Can J For Res 29:1073–1083. doi:10.1139/cjfr-29-7-1073 CrossRefGoogle Scholar
  49. Mohlenbrock RH (2001) Grasses: Panicum to Danthonia. The Illustrated Flora of Illinois, 2nd edn. Southern Illinois University Press, CarbondaleGoogle Scholar
  50. Mohlenbrock RH, Nelson P, Meyer MW (2002) Grasses : Bromus to Paspalum, 2nd edn. Southern Illinois University Press, Carbondale, The Illustrated Flora of IllinoisGoogle Scholar
  51. Nagaike T, Hayashi A, Abe M, Arai N (2003) Differences in plant species diversity in Larix kaempferi plantations of different ages in central Japan. For Ecol Manag 183:177–193. doi:10.1016/S0378-1127(03)00105-1 CrossRefGoogle Scholar
  52. Newmaster SG, Bell FW, Vitt DH (1999) The effects of glyphosate and triclopyr on common bryophytes and lichens in northwestern Ontario. Can J For Res 29:1101–1111. doi:10.1139/cjfr-29-7-1101 CrossRefGoogle Scholar
  53. Newmaster SG, Parker WC, Bell FW, Paterson JM (2007) Effects of forest floor disturbances by mechanical site preparation on floristic diversity in a central Ontario clearcut. For Ecol Manag 246:196–207. doi:10.1016/j.foreco.2007.03.058 CrossRefGoogle Scholar
  54. Oksanen J et al. (2017) Vegan: community ecology Package, R package version 2.4-3. https://CRAN.R-project.org/package=vegan
  55. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34. doi:10.1890/080116 CrossRefGoogle Scholar
  56. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x CrossRefGoogle Scholar
  57. Park A, Wilson ER (2007) Beautiful plantations: can intensive silviculture help Canada to fulfill ecological and timber production objectives? For Chron 83:825–839CrossRefGoogle Scholar
  58. Patry C, Kneeshaw D, Aubin I, Messier C (2017) Intensive forestry filters understory plant traits over time and space in boreal forests. Forestry 90:436–444Google Scholar
  59. Payn T et al (2015) Changes in planted forests and future global implications. For Ecol Manag 352:57–67. doi:10.1016/j.foreco.2015.06.021 CrossRefGoogle Scholar
  60. Perron M (2008) A strategy for the second breeding cycle of Larix × marschlinsii in Quebec, Canada including experiments to guide interspecific tree breeding programme. Silvae Genet 57:282–291Google Scholar
  61. Ponder F et al (2012) Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons For Ecol. Manage 278:35–54. doi:10.1016/j.foreco.2012.04.014 Google Scholar
  62. R Core Team (2016) R: a language and environment for statistical computing. Austria, ViennaGoogle Scholar
  63. Rajaniemi TK (2002) Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J Ecol 90:316–324. doi:10.1046/j.1365-2745.2001.00662.x CrossRefGoogle Scholar
  64. Ramovs BV, Roberts MR (2005) Response of plant functional groups within plantations and naturally regenerated forests in southern New Brunswick, Canada. Can J For Res 35:1261–1276. doi:10.1139/x05-049 CrossRefGoogle Scholar
  65. Ricard JP, Messier C, Delagrange S, Beaudet M (2003) Do understory sapling respond to both light and below-ground competition? A field experiment in a north-eastern American hardwood forest and a literature review. Ann For Sci 60:749–756. doi:10.1051/forest:2003069 CrossRefGoogle Scholar
  66. Saucier J-P, Robitaille A, Grondin P (2009) Cadre bioclimatique du Québec. In: Doucet R, Côté M (eds) Manuel de foresterie, 2nd edn. Éditions Multimondes, Québec, pp 186–205Google Scholar
  67. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. doi:10.1023/a:1010086329619 CrossRefGoogle Scholar
  68. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80. doi:10.1016/j.tree.2015.11.005 CrossRefPubMedGoogle Scholar
  69. Soil classification working group (1998) The Canadian system of soil classification, 3rd edn. NRC Research Press, OttawaGoogle Scholar
  70. Stephens SS, Wagner MR (2007) Forest plantations and biodiversity: a fresh perspective J For 105:307–313Google Scholar
  71. Talbot P, Schroeder WR, Bousquet J, Isabel N (2012) When exotic poplars and native Populus balsamifera L. meet on the Canadian Prairies: spontaneous hybridization and establishment of interspecific hybrids. For Ecol Manag 285:142–152. doi:10.1016/j.foreco.2012.07.036 CrossRefGoogle Scholar
  72. Thiffault N, Roy V, Prégent G, Cyr G, Jobidon R, Ménétrier J (2003) La sylviculture des plantations résineuses au Québec. Le Naturaliste Canadien 127:63–80Google Scholar
  73. Thomas SC, Halpern CB, Falk DA, Liguori DA, Austin KA (1999) Plant diversity in managed forests: understory responses to thinning and fertilization. Ecol Appl 9:864–879. doi:10.1890/1051-0761(1999)009[0864:pdimfu]2.0.co;2Google Scholar
  74. Thompson PL, Davies TJ, Gonzalez A (2015) Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity. PLoS ONE 10:e0117595. doi:10.1371/journal.pone.0117595 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tittler R, Filotas E, Kroese J, Messier C (2015) Maximizing conservation and production with intensive forest management: it’s all about location. Environ Manag 56:1104–1117. doi:10.1007/s00267-015-0556-3 CrossRefGoogle Scholar
  76. Tuomisto H (2010) A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164:853–860. doi:10.1007/s00442-010-1812-0 CrossRefPubMedGoogle Scholar
  77. Valencia E et al (2015) Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol 206:660–671. doi:10.1111/nph.13268 CrossRefPubMedGoogle Scholar
  78. Wang S, Loreau M (2016) Biodiversity and ecosystem stability across scales in metacommunities. Ecol Lett 52:295–306. doi:10.1111/ele.12582 Google Scholar
  79. Weih M, Karacic A, Munkert H, Verwijst T, Diekmann M (2003) Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic Appl Ecol 4:149–156. doi:10.1078/1439-1791-00157 CrossRefGoogle Scholar
  80. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Département des sciences naturelles and Institut des sciences de la forêt tempérée (ISFORT)Université du Québec en OutaouaisRiponCanada
  2. 2.Centre d’étude de la forêtMontréalCanada
  3. 3.Département des sciences biologiquesUQAM (Université du Québec à Montréal)MontréalCanada
  4. 4.Centre d’enseignement et de recherche en foresterie de Sainte-Foy inc. (CERFO)QuébecCanada

Personalised recommendations