Biodiversity and Conservation

, Volume 27, Issue 3, pp 567–582 | Cite as

The conservation status of African vertebrates is unrelated to environmental and spatial patterns in their geographic ranges

  • Falko T. BuschkeEmail author
  • Luc Brendonck
  • Bram Vanschoenwinkel
Original Paper


Statistical predictions of the impact of climate change on biodiversity assume that the environmental and spatial characteristics of contemporary species’ distributions reflect the conditions needed for their continued and prolonged existence. Here we explore this assumption by testing whether a species’ threatened status is associated with the amount of variation in its distribution range attributable to environmental and spatial patterns. Using a variation partitioning approach, we decomposed variation in the distribution ranges of 4423 vertebrate species in sub-Saharan Africa into components attributable exclusively to environmental variables (E|S), exclusively to spatial variables (S|E) or to the collinearity between environmental and spatial variables (E∩S). We found that species’ threatened status was unrelated to E|S, S|E or E∩S variation components, but that unexplained variation was higher for species threatened with extinction. This suggests that spatio-environmental patterns in species’ ranges likely underestimate the overall extinction threat caused by climate change. We also found clear geographic patterns in the strength of E|S, S|E or E∩S that differed amongst biogeographical regions, but no component was over- or underrepresented in the present-day protected area network. While there may be benefits to tailoring protected area expansion to differences between biogeographical regions, this should aim to incorporate species-specific information wherever possible.


Biogeography Extinction threat Protected areas Sub-Saharan Africa Variation partitioning 



This work was supported by a EUROSA Erasmus Mundus action 2 PhD Scholarship. We would also like to thank Raquel Garcia and two anonymous referees for comments that improved this manuscript.

Supplementary material

10531_2017_1449_MOESM1_ESM.docx (472 kb)
Supplementary material 1 (DOCX 471 kb)


  1. Akçakaya HR, Butchart SHM, Mace GM, Stuart SN, Hilton-Taylor C (2006) Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob Change Biol 12:2037–2043. doi: 10.1111/j.1365-2486.2006.01253.x CrossRefGoogle Scholar
  2. Barr LM, Pressey RL, Fuller RA, Segan DB, McDonald-Madden E, Possingham HP (2011) A new way to measure the world’s protected area coverage. PLoS ONE 6:e24707. doi: 10.1371/journal.pone.0024707 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression of spatial data. Ecol Lett 13:246–264. doi: 10.1111/j.1461-0248.2009.01422.x CrossRefPubMedGoogle Scholar
  4. Bennett AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. International Union for the Conservation of Nature, Gland, SwitzerlandCrossRefGoogle Scholar
  5. BirdLife International, NatureServe (2011) Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA.
  6. Blanchet F, Legendre GP, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi: 10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  7. Böhm M, Collen B, Baille JEM et al (2013) The conservation status of the world’s reptiles. Biol Conserv 157:372–385. doi: 10.1016/j.biocon.2012.07.015 CrossRefGoogle Scholar
  8. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832. doi: 10.1890/03-3111 CrossRefGoogle Scholar
  9. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460. doi: 10.1016/j.tree.2008.03.011 CrossRefPubMedGoogle Scholar
  10. Brooker L, Brooker M, Cale P (1999) Animal dispersal in fragmented habitat: measuring habitat connectivity, corridor use, and dispersal mortality. Ecol Soc 3: Art. 4Google Scholar
  11. Buckley LB, Urban M, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054. doi: 10.1111/j.1461-0248.2010.01479.x CrossRefPubMedGoogle Scholar
  12. Burrows MT, Schoeman DS, Richardson AJ et al (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–495. doi: 10.1038/nature12976 CrossRefPubMedGoogle Scholar
  13. Buschke FT, Brendonck L, Vanschoenwinkel B (2014) Differences between regional and biogeographic species pools highlight the need for multi-scale theories in macroecology. Front Biogeogr 6:173–184. ISSN 1948-6596Google Scholar
  14. Buschke FT, Brendonck L, Vanschoenwinkel B (2015a) Simple mechanistic models can partially explain local but not range-wide co-occurrence of African mammals. Global Ecol Biogeogr 24:762–773. doi: 10.1111/geb.12316 CrossRefGoogle Scholar
  15. Buschke FT, De Meester L, Brendonck L, Vanschoenwinkel B (2015b) Partitioning the variation in African vertebrate distributions into environmental and spatial components—exploring the link between ecology and biogeography. Ecography 38:450–461. doi: 10.1111/ecog.00860 CrossRefGoogle Scholar
  16. Cabeza M, Arponen A, Jäättelä L, Kujala H, Van Teeffelen A, Hanski I (2010) Conservation planning with insects at three different spatial scales. Ecography 33:54–63. doi: 10.1111/j.1600-0587.2009.06040.x CrossRefGoogle Scholar
  17. Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc Lond B 275:1441–1448. doi: 10.1098/rspb.2008.0179 CrossRefGoogle Scholar
  18. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing world. Science 332:53–58. doi: 10.1126/science.1200303 CrossRefPubMedGoogle Scholar
  19. Di Marco M, Santini L (2015) Human pressures predict species’ geographic range size better than biological traits. Glob Change Biol 21:2169–2178. doi: 10.1111/gcb.12834 CrossRefGoogle Scholar
  20. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015 CrossRefGoogle Scholar
  21. Early R, Sax DF (2011) Analysis of climate paths reveals potential limitations on species range shifts. Ecol Lett 14:1125–1133. doi: 10.1111/j.1461-0248.2011.01681.x CrossRefPubMedGoogle Scholar
  22. Economo EP (2011) Biodiversity conservation in metacommunity networks: linking patterns and persistence. Am Nat 177:E167–E180. doi: 10.1086/659946 CrossRefPubMedGoogle Scholar
  23. Espinheira PL, Ferrari SLP, Cribari-Neto F (2008) On beta regression residuals. J Appl Stat 35:407–419. doi: 10.1080/02664760701834931 CrossRefGoogle Scholar
  24. Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 37:799–815. doi: 10.1080/0266476042000214501 CrossRefGoogle Scholar
  25. Foden W, Butchart SHM et al (2013) Identifying the world’s most climate change vulnerable species; a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8:e65427. doi: 10.1371/journal.pone.0065427 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  27. Game ET, Lipsett-Moore G, Saxon E, Peterson N, Sheppard S (2011) Incorporating climate change adaptation into national conservation assessments. Glob Change Biol 17:3150–3160. doi: 10.1111/j.1365-2486.2011.02457.x CrossRefGoogle Scholar
  28. Garcia RA, Araújo MB, Burgess ND, Foden WB, Gutsche A, Rahbek C, Cabeza M (2014a) Matching species traits to projected threats and opportunities from climate change. J Biogeogr 41:724–735. doi: 10.1111/jbi.12257 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Garcia RA, Cabeza M, Rahbek C, Araújo MB (2014b) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579. doi: 10.1126/science.1247579 CrossRefPubMedGoogle Scholar
  30. Garcia RA, Cabeza M, Altwegg R, Araújo MB (2016) Do projections from bioclimatic envelope models and climate change metrics match? Global Ecol Biogeogr 25:65–74. doi: 10.1111/geb.12386 CrossRefGoogle Scholar
  31. Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9. doi: 10.1111/j.1365-2664.2008.01596.x CrossRefGoogle Scholar
  32. Guisan A, Harrell FE (2000) Ordinal response regression models in ecology. J Veg Sci 11:617–626. doi: 10.2307/3236568 CrossRefGoogle Scholar
  33. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. doi:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2Google Scholar
  34. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  35. Hoffmann M, Hilton-Taylor C, Angulo A et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1512. doi: 10.1126/science.1194442 CrossRefPubMedGoogle Scholar
  36. Imhoff ML, Bounoua L (2006) Exploring global patterns of net primary production carbon supply and demand using satellite observations and statistical data. J Geophys Res. doi: 10.1029/2006JD007377 Google Scholar
  37. Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence WT (2004a) HANPP collection: global patterns in net primary productivity (NPP). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). doi: 10.7927/H40Z715X
  38. Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence WT (2004b) Global patterns in human consumption of net primary production. Nature 429:870–873. doi: 10.1038/nature02619 CrossRefPubMedGoogle Scholar
  39. International Union for the Conservation of Nature (IUCN) (2014) The IUCN Red List of threatened species. Version 2014.1.
  40. International Union for the Conservation of Nature (IUCN), United Nations Environment Programme (UNEP) (2014) The world database on protected areas (WDPA). UNEP-WCMC, Cambridge, UK.
  41. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2:e296. doi: 10.1371/journal.pone.0000296 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecol Biogeogr 21:393–404. doi: 10.1111/j.1466-8238.2011.00686.x CrossRefGoogle Scholar
  43. Kerney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350. doi: 10.1111/j.1461-0248.2008.01277.x CrossRefGoogle Scholar
  44. Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol Biogeogr 17:59–71. doi: 10.1111/j.1466-8238.2007.00334.x CrossRefGoogle Scholar
  45. Klein C, Wilson K, Watts M, Stein J, Berry S, Carwardine J, Stafford Smith M, Mackey B, Possingham H (2009) Incorporating ecological and evolutionary processes into continental-scale conservation planning. Ecol Appl 19:206–217. doi: 10.1890/07-1684.1 CrossRefPubMedGoogle Scholar
  46. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927. doi: 10.1086/285580 CrossRefGoogle Scholar
  47. Lawler JJ, Shafer SL, White D, Karieva P, Maurer EP, Blaustein AR, Bartlein PJ (2009) Projected climate-influenced faunal change in the Western Hemisphere. Ecology 90:588–597. doi: 10.1890/08-0823.1 CrossRefPubMedGoogle Scholar
  48. Lee TM, Jetz W (2011) Unravelling the structure of species extinction risk for predictive conservation science. Proc R Soc Lond B 278:1329–1338. doi: 10.1098/rspb.2010.1877 CrossRefGoogle Scholar
  49. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi: 10.1007/s004420100716 CrossRefPubMedGoogle Scholar
  50. Legendre P, Legendre L (2012) Numerical ecology, 3rd English edn. Elsevier, AmsterdamGoogle Scholar
  51. Levinsky I, Araújo MB, Nogués-Bravo D, Haywood AM, Valdes PJ, Rahbek C (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. Glob Ecol Biogeogr 22:351–363. doi: 10.1111/geb.12045 CrossRefGoogle Scholar
  52. Lewin A, Feldman A, Bauer AM et al (2016) Patterns of species richness, endemism and environmental gradients of African reptiles. J Biogeogr 43:2380–2390. doi: 10.1111/jbi.12848 CrossRefGoogle Scholar
  53. Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr 39:1189–1205. doi: 10.1111/j.1365-2699.2012.02728.x CrossRefGoogle Scholar
  54. Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akçakaya HR, Leader-Williams N, Milner-Gulland EJ, Stuart SN (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442. doi: 10.1111/j.1523-1739.2008.01044.x CrossRefPubMedGoogle Scholar
  55. Mantyka-Pringle CS, Martin TG, Rhodes JR (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Change Biol 18:1239–1252. doi: 10.1111/j.1365-2486.2011.02593.x CrossRefGoogle Scholar
  56. Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Conserv 187:103–111. doi: 10.1016/j.biocon.2015.04.016 CrossRefGoogle Scholar
  57. Moran PAP (1950) Notes of continuous stochastic phenomena. Biometrika 37:17–23CrossRefPubMedGoogle Scholar
  58. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536. doi: 10.1046/j.1365-2656.1998.00215.x CrossRefGoogle Scholar
  59. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: a bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  60. Pearson RG, Stanton JC, Shoemaker KT et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nature Clim Change 4:217–221. doi: 10.1038/NCLIMATE2113 CrossRefGoogle Scholar
  61. Pekin BH, Pijanowski BC (2012) Global land use intensity and the endangerment status of mammals species. Divers Distrib 18:909–918. doi: 10.1111/j.1472-4642.2012.00928.x CrossRefGoogle Scholar
  62. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2Google Scholar
  63. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952. doi: 10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  64. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  65. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi: 10.1046/j.1461-0248.2003.00554.x CrossRefGoogle Scholar
  66. Rouget M, Cowling RM, Lombard AT, Knight AT, Kerley GIH (2006) Designing large-scale conservation corridors for pattern and process. Conserv Biol 20:549–561. doi: 10.1111/j.1523-1739.2006.00297.x CrossRefPubMedGoogle Scholar
  67. Sohdi NS, Bickford D, Diesmos AC, Lee T, Koh L, Brook BW, Sekercioglu CH, Bradshaw CJA (2008) Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE 3:e1636. doi: 10.1371/journal.pone.0001636 CrossRefGoogle Scholar
  68. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinction worldwide. Science 306:1783–1786. doi: 10.1126/science.1103538 CrossRefPubMedGoogle Scholar
  69. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. doi: 10.1038/nature02121 CrossRefPubMedGoogle Scholar
  70. Trabucco A, Zomer RJ (2009) Global aridity index (global-aridity) and global potential evapo-transpiration (Global-PET) geospatial dataset. CGIAR Consortium for Spatial Information. CGIAR-CSI GeoPortal.
  71. Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244. doi: 10.1126/science.1078037 CrossRefPubMedGoogle Scholar
  72. Warren DL, Cardillo M, Rosauer DF, Bolnick DI (2014) Mistaking geography for biology: inferring processes from species distributions. Trends Ecol Evol 29:572–780. doi: 10.1016/j.tree.2014.08.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Centre for Environmental Management (67)University of the Free StateBloemfonteinSouth Africa
  2. 2.Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLouvainBelgium
  3. 3.Department of BiologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations