Skip to main content

Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard (Panthera pardus kotiya)

Abstract

Apex predators fulfil potentially vital ecological roles. Typically wide-ranging and charismatic, they can also be useful surrogates for biodiversity preservation, making their targeted conservation imperative. The Sri Lankan leopard (Panthera pardus kotiya), an endangered, endemic sub-species, is the island’s apex predator. Of potential keystone importance, this carnivore also fulfills “umbrella” and “flagship” criterion and is of high ecological and existence value. Apex predator conservation requires identifying factors underlying distribution, so we used multi-scale maximum entropy modelling with sampling bias correction to investigate a broad suite of relevant ecological, climatic and anthropogenic factors in order to identify potentially suitable leopard habitat. Presence locations were determined from 15 years of surveys, observations and verified reports. The best bias correction procedure and scale were uncertain, so we employed a novel method of using information from all models across analyses to determine top models and identify influential variables. Leopard presence was most strongly linked to the landscape proportion encompassed by Protected Areas strictly limiting human presence, with more porous Protected Areas less influential. All three forest composition and configuration metrics investigated (area weighted mean patch size, patch density and forest connectivity) were influential, with increased patch size and higher connectivity predicting better habitat suitability for leopards. Habitat suitability was also better where cropland extent and urban patch size were small. In summary, ground-level protection and natural forest extent and connectivity are of profound importance to Sri Lankan leopard distribution and are key factors in ensuring the ecological integrity of the island’s faunal assemblages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Andelman SJ, Fagan WF (2000) Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proc Natl Acad Sci 97:5954–5959

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Anderson RP, Gonzalez I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893

    Article  Google Scholar 

  • Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth KU (2013) Big cats in our backyards: persistence of large carnivores in a human dominated landscape in India. PLoS ONE 8(3):e57872

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth KU (2016) A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50(1):156–162

    Article  Google Scholar 

  • Balme GA, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim Behav 74:589–598

    Article  Google Scholar 

  • Balme GA, Slotow R, Hunter LTB (2009) Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim Conserv 2010:1–9. doi:10.1111/j.1469-1795.2009.00342.x

    Google Scholar 

  • Basille M, Van Moorter B, Herfindal I, Martin J, Linnell JDC, Odden J, Andersen R, Gaillard J-M (2013) Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS ONE. doi:10.1371/journal.pone.0065493

    PubMed  PubMed Central  Google Scholar 

  • Bauer H, Chapron G, Nowell K, Henschel P, Funston P, Hunter LTB, Macdonald DW, Packer C (2015) Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc Natl Acad Sci-Biol. doi:10.1073/pnas.1500664112

    Google Scholar 

  • Bellamy C, Scott C, Altringham J (2013) Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. J Appl Ecol 50:892–901

    Article  Google Scholar 

  • Beyer HL (2012) Geospatial Modelling Environment (Version 0.7.2.1). (software). http://www.spatialecology.com/gme

  • Bouyer Y, San Martin G, Poncin P, Beudels-Jamar RC, Odden J, Linnell JDC (2015) Eurasian lynx habitat selection in human-modified landscape in Norway: effects of different human habitat modifications and behavioral states. Biol Conserv 191:291–299

    Article  Google Scholar 

  • Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276

    Article  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil—a biodiversity tragedy in progress. Front Ecol Environ 7:79–87

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16(4):909–923

    Article  Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape, genetic, biogeographic and species distribution model analyses. Method Ecol Evol 5:694–700

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science 295:2273–2276

    CAS  Article  PubMed  Google Scholar 

  • Caro TM (2003) Umbrella species: critique and lessons from East Africa. Anim Conserv 6:171–181

    Article  Google Scholar 

  • Caro TM (2010) Conservation by Proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington D.C

  • Carroll D, Noss RE, Paquet PC, Schumaker NH (2003) Use of population viability analysis and reserve selection algorithms in regional conservation plans. Ecol Appl 13:1773–1789

    Article  Google Scholar 

  • Carter NH, Linnell JDC (2016) Co-adaptation is key to coexisting with large carnivores. Trends Ecol Evol 31:575–578

    Article  PubMed  Google Scholar 

  • Carter N, Jasny M, Gurung B, Liu J (2015) Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecol Conserv 3:149–162

    Article  Google Scholar 

  • Carvalho F, Carvalho R, Mira A, Beja P (2016) Assessing landscape functional connectivity in a forest carnivore using path selection functions. Landsc Ecol 31:1021–1036

    Article  Google Scholar 

  • Cavalcanti SMC, Marchini S, Zimmermann A, Gese EM, Macdonald DW (2010) Jaguars, livestock, and people in Brazil: realities and perceptions behind the conflict. In: Macdonald DW, Loveridge AJ (eds) Biology and conservation of wild felids. Oxford University Press, Oxford, pp 383–402

    Google Scholar 

  • Crooks KR, Burdett CL, Theobald DM, Rondinini C, Boitani L (2011) Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos T Roy Soc B 366:2642–2651

    Article  Google Scholar 

  • Cushman SA, Elliot NB, Macdonald DW, Loveridge AJ (2015) A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc Ecol 31:1337–1353

    Article  Google Scholar 

  • de A Goonatilake WLDPTS, Molur S (2008) Crocidura miya. (errata version published in 2016) The IUCN Red List of Threatened Species 2008: e.T5608A88690746. Accessed 27 May 2017

  • de A Goonatilake WLDPTS, Nameer PO, Molur S (2008a) Solisorex pearsoni. (errata version published in 2016) The IUCN Red List of Threatened Species 2008: e.T20332A88692605.. Accessed 27 May 2017

  • de A Goonatilake WLDPTS, Nameer PO, Molur S (2008b) Suncus zeylanicus. (errata version published in 2016) The IUCN Red List of Threatened Species 2008: e.T21148A88693246.. Accessed 27 May 2017

  • De Silva MBG (1997) Climate. In: Somasekaram T, Perera MP, de Silva MBG, Godellawatta H (eds) Arjuna’s atlas of Sri Lanka, Dehiwala, pp 16–22

  • Department of Census and Statistics (2012) Population atlas of Sri Lanka. Ministry of Finance and Planning, Colombo. http://www.statistics.gov.lk/PopHouSat/PopulationAtla_2012. Accessed 10 Mar 2016

  • Deraniyagala SU (1992) The prehistory of Sri Lanka: an ecological perspective. Memoir 8, 2nd edn. Archaeological Department, Colombo

    Google Scholar 

  • Dickman AM, Hinks AE, Macdonald EA, Burnham D, Macdonald DW (2014) Priorities for global felid conservation. Conserv Biol 29(3):854–864

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • DSL250. (2015) Survey department of Sri Lanka shapefile. (software). http://www.survey.gov.lk/surveyweb/Home%20English/MapsandGEOInformation.php. Accessed 12 Mar 2016

  • DWC (2014) The top seven wild Sri Lanka—the leopard. In: Sarathchandra H (ed) Sri Lanka Wildlife 10(1):6–9. Department of Wildlife Conservation, Colombo

    Google Scholar 

  • Edirisinghe JP, Bambaradeniya CNB (2006) Rice fields: an ecosystem rich in biodiversity. J Nat Sci Found Sri Lanka 34(2):57–59

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • ESA CCI LC (2016) European Space Agency’s Climate Change Initiative Land Cover map 2010. ESACCI-LC-L4-LCCS-Map-300 m-P5Y-2010-v.1.6.1.tif

  • ESRI (2015) ArcGIS Desktop: Release 10.3.1. Redlands: Environmental Systems Research Institute

  • Estes JA (2005) Carnivory and trophic cascades in kelp forests. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington D.C., pp 61–80

    Google Scholar 

  • FAO (2015) Global forest resources assessment 2015. Rome. http://www.fao.org/forestry/fra. Accessed 10 Mar 2016

  • Fattebert J, Balme G, Dickerson T, Slotow R, Hunter L (2015) Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS ONE 10:e0122355

    Article  PubMed  PubMed Central  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fisher JT, Anholt B, Bradbury S, Wheatley M, Volpe JP (2013) Spatial segregation of sympatric marten and fishers: the influence of landscapes and species-scapes. Ecography 36:240–248

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:1–13

    Article  Google Scholar 

  • Gagnon JW, Theimer TC, Dodd NL, Boe S, Schweinsburg RE (2007) Traffic volume alters elk distribution and highway crossings in Arizona. J Wildlife Manag 71(7):2318–2323

    Article  Google Scholar 

  • Grassman LI (1999) Ecology and behavior of the Indochinese leopard in Kaeng Krachan National Park, Thailand. Nat Hist Bull Siam Soc 47:77–93

    Google Scholar 

  • Guggisberg CAW (1975) Wild cats of the world. Taplinger Publishing Company, New York

    Google Scholar 

  • Gunasena HPM, Pushpakumara DKNG (2015) Chena cultivation in Sri Lanka. In: Cairns M (ed) Shifting cultivation and environmental change: indigenous people, agriculture and forest conservation. Routledge, New York, pp 199–220

    Google Scholar 

  • Harihar A, Pandav B, Goyal SP (2011) Responses of leopard Panthera pardus to the recovery of a tiger Panthera tigris population. J Appl Ecol 48(3):806–814

    Article  Google Scholar 

  • Hayward MW, Henschel P, O’Brien J, Hofmeyr M, Balme G, Kerley GIH (2006) Prey preferences of the leopard (Panthera pardus). J Zool (Lon) 270:298–313

    Google Scholar 

  • Inskip C, Zimmermann A (2009) Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1):18–34

    Article  Google Scholar 

  • IUCN and UNEP-WCMC (2015) The world database on protected areas (WDPA), Cambridge, UK: UNEP-WCMC. http://www.protectedplanet.net. Accessed 12 Mar 2016

  • Jacobson AP, Gerngross P, Lemeris JR Jr, Schoonover RF, Anco C, Breitenmoser-Würsten C, Durant SM, Farhadinia MS, Henschel P, Kamler JF, Laguardia A, Rostro-Garcia S, Stein AB, Dollar L (2016) Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4:e1974. doi:10.7717/peerj.1974

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson D (1980) The comparison of usage and availability measurements for evaluating resource preferences. Ecology 61:65–71

    Article  Google Scholar 

  • Kittle AM, Watson AC (2008) Panthera pardus ssp. kotiya. In: IUCN 2012. 2012

  • Kittle AM, Watson AC (2017) Density of leopards (Panthera pardus kotiya) in Horton Plains National Park in the Central Highlands of Sri Lanka. Mammalia. doi:10.1515/mammalia-2016-0139

    Google Scholar 

  • Kittle AM, Fryxell JM, Desy GE, Hamr J (2008) The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates. Oecologia 157:163–175

    Article  PubMed  Google Scholar 

  • Kittle AM, Watson AC, Kumara PHC, Sanjeewani HKN (2012) Notes on the status, distribution and abundance of the Sri Lankan leopard in the central hills of Sri Lanka. CatNews 56:28–31

    Google Scholar 

  • Kittle AM, Watson AC, Kumara PHC, Sandanayake SDK, Sanjeewani HKN, Fernando S (2014) Notes on the diet, prey and habitat selection of the Sri Lankan leopard in the central highlands of Sri Lanka. J Threat Taxa 6(9):6214–6221

    Article  Google Scholar 

  • Kittle AM, Watson AC, Fernando SP (2017) The ecology and behavior of a protected area Sri Lankan leopard (Panthera pardus kotiya) population. Trop Ecol 57(5):71–86

    Google Scholar 

  • Kuhn BF (2014) A preliminary assessment of the carnivore community outside Johannesburg, South Africa. S Afr J Wildlife Res 44(1):95–98

    Article  Google Scholar 

  • LP DAAC (2016) NASA Shuttle Radar Topography Mission (SRTM). Land Processes Distributed Active Archive Centre (LP DAAC). http://lpdaac.usgs.gov. Accessed 14 Mar 2016

  • Macdonald DW, Loveridge AJ, Nowell K (2010) Dramatis personae: an introduction to the wild felids. In: Macdonald DW, Loveridge AJ (eds) Biology and conservation of wild felids. Oxford University Press, Oxford, pp 3–58

    Google Scholar 

  • Marker LL, Dickman AJ (2005) Factors affecting leopard (Panthera pardus) spatial ecology, with particular reference to Namibian farmlands. S Afr J Wildlife Res 35:105–115

    Google Scholar 

  • Mateo Sánchez MC, Cushman SA, Saura S (2013) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci. doi:10.1080/13658816.2013.776684

    Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer Software Programs Products by authors Univ. Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 2 May 2016

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol 31:1161–1175

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Miththapala S, Seidensticker J, O’Brien SJ (1996) Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation. Conserv Biol 4:1115–1132

    Article  Google Scholar 

  • Odden M, Wegge P, Fredriksen T (2010) Do tigers displace leopards? If so, why? Ecol Res 25:875–881

    Article  Google Scholar 

  • Paine RT (1966) A note on trophic complexity and community stability. Am Nat 103(929):91–93

    Article  Google Scholar 

  • Perera MP (1997a) Surface water. In: Perera MP, de Silva MBG, Godellawatta H (eds) Somasekaram T. Arjuna’s atlas of Sri Lanka, Dehiwala, pp 23–26

    Google Scholar 

  • Perera MP (1997b) Paddy. In: Perera MP, de Silva MBG, Godellawatta H (eds) Somasekaram T. Arjuna’s atlas of Sri Lanka, Dehiwala, pp 85–87

    Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Düdik M, Elith J, Graham CH, Lehmann A, Leathwick JR, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Pimm SL, Raven PR (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    CAS  Article  PubMed  Google Scholar 

  • Power M, Tilman D, Estes J, Menge B, Bond W, Mills L, Daily G, Castilla J, Lubchenco J, Paine R (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143(4):939–945

    Article  Google Scholar 

  • Redford KH (2005) Introduction: how to value large carnivorous animals. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington D.C., pp 1–6

    Google Scholar 

  • Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484

    Article  PubMed  Google Scholar 

  • Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737

    Article  Google Scholar 

  • Rostro-Garcia S, Tharchen L, Abade L, Astaras C, Cushman SA, Macdonald DW (2016) Scale dependence of felid predation risk: identifying predictors of livestock kills by tiger and leopard in Bhutan. Landsc Ecol 31:1277–1298

    Article  Google Scholar 

  • Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM, Peterson AT, Owens HL, Lira-Noriega A (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol Model 237–238:11–22. doi:10.1016/j.ecolmodel.2012.04.001

    Article  Google Scholar 

  • Sergio F, Newton I, Marchesi L, Pedrini P (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. J Appl Ecol 43:1049–1055

    Article  Google Scholar 

  • Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst 39:1–19

    Article  Google Scholar 

  • Shehzad W, Nawaz MA, Pompanon F, Coissac E, Riaz T, Shah SA, Taberlet P (2015) Forest without prey: livestock sustain a leopard Panthera pardus population in Pakistan. Oryx 49(2):248–253

    Article  Google Scholar 

  • Shirk AJ, Raphael MG, Cushman SA (2014) Spatiotemporal variation in resource selection: insights from the American marten (Martes americana). Ecol Appl 24:1434–1444

    Article  PubMed  Google Scholar 

  • Somasekaram T (1997) Land use. In: Perera MP, de Silva MBG, Godellawatta H (eds) Somasekaram T. Arjuna’s atlas of Sri Lanka, Dehiwala, pp 82–84

    Google Scholar 

  • Stander PE, Haden PJ, Kaqece II, Ghau II (1997) The ecology of asociality in Namibian leopards. J Zool (Lon) 242:343–364

    Article  Google Scholar 

  • Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Miquelle D, Rostro-Garcia 12S, Kamler JF, Laguardia A, Khorozyan I, Ghoddousi A (2016) Panthera pardus. The IUCN Red List of Threatened Species e. T15954A102421779. http://www.iucnredlist.org/details/15954/0 Accessed 5 Dec 2016

  • Steneck RS (2005) An ecological context for the role of large carnivores in conserving biodiversity. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington D.C., pp 9–33

    Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distributions models. PLoS ONE. doi:10.1371/journal.pone.0055158

    PubMed  Google Scholar 

  • Terborgh J, Lopez L, Nunez PV, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    CAS  Article  PubMed  Google Scholar 

  • Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landsc Ecol 17:569–586

    Article  Google Scholar 

  • Timm BC, McGarigal K, Cushman SA, Ganey JL (2016) Multi-scale Mexican spotted owl nest/roost habitat selection in Arizona and comparison with single-scale modeling results. Landsc Ecol 31:1209–1225

    Article  Google Scholar 

  • Turner A (1997) The big cats and their fossil relatives: an illustrated guide to their evolution and natural history. Columbia University Press, New York

    Google Scholar 

  • Uphyrkina O, Johnson W, Quigly H, Miquelle D, Markar L, Bush M, O’Brien SJ (2001) Phylogenetics, genome diversity and origin of modern leopard (Panthera pardus). Mol Ecol 10:2617–2633

    CAS  Article  PubMed  Google Scholar 

  • Vergara M, Cushman SA, Urra F, Ruiz-González A (2016) Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc Ecol. doi:10.1007/s10980-015-0307-0

    Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Wasserman TN, Cushman SA, Walin DO, Hayden J (2012) Multi-scale habitat relationships of Martes americana in northern Idaho, U.S.A. USDA Forest Service RMRS Research Paper RMRS-RP-94

  • Watson AC, Kittle AM (2004) Distribution and status of the Sri Lankan leopard—a short report. CatNews 41:12–15

    Google Scholar 

  • Wegmann M, Santini L, Leutner B, Safi K, Rocchini D, Bevanada M, Latifi H, Dech S, Rondinini C (2014) Role of African protected areas in maintaining connectivity for large mammals. Philos T Roy Soc B 369:20130193

    Article  Google Scholar 

  • Whittington J, St Cassady, Clair C, Mercer G (2005) Spatial responses of wolves to roads and trails in mountain valleys. Ecol Appl 15(2):543–553

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Yokoyama Y, Lambeck K, De Deckker P, Johnson P, Fifield LK (2000) Timing of the last glacial maximum from observed sea-level minima. Nature 406:713–716

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Department of Wildlife Conservation and Forest Department in Sri Lanka for providing permits for research. Chanaka Kumara, Nimalka Sanjeewani, Dr. Tharaka Prasad, Dilum Wijenayake, Arran Sivaraj, Riahn Pieris, Emad Sangani and Anil Vithanage for assistance with data collection for distribution mapping. Funding was provided by CERZA Conservation, The People’s Trust for Endangered Species, a Rufford Small Grant, The Ministry of Environment and Natural Resources (Biodiversity Unit) Sri Lanka, and individual donors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Kittle.

Additional information

Communicated by Karen E. Hodges.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1270 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kittle, A.M., Watson, A.C., Cushman, S.A. et al. Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard (Panthera pardus kotiya). Biodivers Conserv 27, 235–263 (2018). https://doi.org/10.1007/s10531-017-1431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1431-8

Keywords

  • Biodiversity conservation
  • Habitat suitability
  • Maximum entropy
  • Sampling bias