Biodiversity and Conservation

, Volume 27, Issue 1, pp 235–263 | Cite as

Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard (Panthera pardus kotiya)

  • Andrew M. KittleEmail author
  • Anjali C. Watson
  • Samuel A. Cushman
  • David. W. Macdonald
Original Paper


Apex predators fulfil potentially vital ecological roles. Typically wide-ranging and charismatic, they can also be useful surrogates for biodiversity preservation, making their targeted conservation imperative. The Sri Lankan leopard (Panthera pardus kotiya), an endangered, endemic sub-species, is the island’s apex predator. Of potential keystone importance, this carnivore also fulfills “umbrella” and “flagship” criterion and is of high ecological and existence value. Apex predator conservation requires identifying factors underlying distribution, so we used multi-scale maximum entropy modelling with sampling bias correction to investigate a broad suite of relevant ecological, climatic and anthropogenic factors in order to identify potentially suitable leopard habitat. Presence locations were determined from 15 years of surveys, observations and verified reports. The best bias correction procedure and scale were uncertain, so we employed a novel method of using information from all models across analyses to determine top models and identify influential variables. Leopard presence was most strongly linked to the landscape proportion encompassed by Protected Areas strictly limiting human presence, with more porous Protected Areas less influential. All three forest composition and configuration metrics investigated (area weighted mean patch size, patch density and forest connectivity) were influential, with increased patch size and higher connectivity predicting better habitat suitability for leopards. Habitat suitability was also better where cropland extent and urban patch size were small. In summary, ground-level protection and natural forest extent and connectivity are of profound importance to Sri Lankan leopard distribution and are key factors in ensuring the ecological integrity of the island’s faunal assemblages.


Biodiversity conservation Habitat suitability Maximum entropy Sampling bias 



The Department of Wildlife Conservation and Forest Department in Sri Lanka for providing permits for research. Chanaka Kumara, Nimalka Sanjeewani, Dr. Tharaka Prasad, Dilum Wijenayake, Arran Sivaraj, Riahn Pieris, Emad Sangani and Anil Vithanage for assistance with data collection for distribution mapping. Funding was provided by CERZA Conservation, The People’s Trust for Endangered Species, a Rufford Small Grant, The Ministry of Environment and Natural Resources (Biodiversity Unit) Sri Lanka, and individual donors.

Supplementary material

10531_2017_1431_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1270 kb)


  1. Andelman SJ, Fagan WF (2000) Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proc Natl Acad Sci 97:5954–5959CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson RP, Gonzalez I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811CrossRefGoogle Scholar
  3. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893CrossRefGoogle Scholar
  4. Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth KU (2013) Big cats in our backyards: persistence of large carnivores in a human dominated landscape in India. PLoS ONE 8(3):e57872CrossRefPubMedPubMedCentralGoogle Scholar
  5. Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth KU (2016) A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50(1):156–162CrossRefGoogle Scholar
  6. Balme GA, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim Behav 74:589–598CrossRefGoogle Scholar
  7. Balme GA, Slotow R, Hunter LTB (2009) Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim Conserv 2010:1–9. doi: 10.1111/j.1469-1795.2009.00342.x Google Scholar
  8. Basille M, Van Moorter B, Herfindal I, Martin J, Linnell JDC, Odden J, Andersen R, Gaillard J-M (2013) Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS ONE. doi: 10.1371/journal.pone.0065493 PubMedPubMedCentralGoogle Scholar
  9. Bauer H, Chapron G, Nowell K, Henschel P, Funston P, Hunter LTB, Macdonald DW, Packer C (2015) Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc Natl Acad Sci-Biol. doi: 10.1073/pnas.1500664112 Google Scholar
  10. Bellamy C, Scott C, Altringham J (2013) Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. J Appl Ecol 50:892–901CrossRefGoogle Scholar
  11. Beyer HL (2012) Geospatial Modelling Environment (Version (software).
  12. Bouyer Y, San Martin G, Poncin P, Beudels-Jamar RC, Odden J, Linnell JDC (2015) Eurasian lynx habitat selection in human-modified landscape in Norway: effects of different human habitat modifications and behavioral states. Biol Conserv 191:291–299CrossRefGoogle Scholar
  13. Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276CrossRefGoogle Scholar
  14. Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil—a biodiversity tragedy in progress. Front Ecol Environ 7:79–87CrossRefGoogle Scholar
  15. Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16(4):909–923CrossRefGoogle Scholar
  16. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape, genetic, biogeographic and species distribution model analyses. Method Ecol Evol 5:694–700CrossRefGoogle Scholar
  17. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  18. Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science 295:2273–2276CrossRefPubMedGoogle Scholar
  19. Caro TM (2003) Umbrella species: critique and lessons from East Africa. Anim Conserv 6:171–181CrossRefGoogle Scholar
  20. Caro TM (2010) Conservation by Proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington D.CGoogle Scholar
  21. Carroll D, Noss RE, Paquet PC, Schumaker NH (2003) Use of population viability analysis and reserve selection algorithms in regional conservation plans. Ecol Appl 13:1773–1789CrossRefGoogle Scholar
  22. Carter NH, Linnell JDC (2016) Co-adaptation is key to coexisting with large carnivores. Trends Ecol Evol 31:575–578CrossRefPubMedGoogle Scholar
  23. Carter N, Jasny M, Gurung B, Liu J (2015) Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecol Conserv 3:149–162CrossRefGoogle Scholar
  24. Carvalho F, Carvalho R, Mira A, Beja P (2016) Assessing landscape functional connectivity in a forest carnivore using path selection functions. Landsc Ecol 31:1021–1036CrossRefGoogle Scholar
  25. Cavalcanti SMC, Marchini S, Zimmermann A, Gese EM, Macdonald DW (2010) Jaguars, livestock, and people in Brazil: realities and perceptions behind the conflict. In: Macdonald DW, Loveridge AJ (eds) Biology and conservation of wild felids. Oxford University Press, Oxford, pp 383–402Google Scholar
  26. Crooks KR, Burdett CL, Theobald DM, Rondinini C, Boitani L (2011) Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos T Roy Soc B 366:2642–2651CrossRefGoogle Scholar
  27. Cushman SA, Elliot NB, Macdonald DW, Loveridge AJ (2015) A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc Ecol 31:1337–1353CrossRefGoogle Scholar
  28. de A Goonatilake WLDPTS, Molur S (2008) Crocidura miya. (errata version published in 2016) The IUCN Red List of Threatened Species 2008: e.T5608A88690746. Accessed 27 May 2017Google Scholar
  29. de A Goonatilake WLDPTS, Nameer PO, Molur S (2008a) Solisorex pearsoni. (errata version published in 2016) The IUCN Red List of Threatened Species 2008: e.T20332A88692605.. Accessed 27 May 2017Google Scholar
  30. de A Goonatilake WLDPTS, Nameer PO, Molur S (2008b) Suncus zeylanicus. (errata version published in 2016) The IUCN Red List of Threatened Species 2008: e.T21148A88693246.. Accessed 27 May 2017Google Scholar
  31. De Silva MBG (1997) Climate. In: Somasekaram T, Perera MP, de Silva MBG, Godellawatta H (eds) Arjuna’s atlas of Sri Lanka, Dehiwala, pp 16–22Google Scholar
  32. Department of Census and Statistics (2012) Population atlas of Sri Lanka. Ministry of Finance and Planning, Colombo. Accessed 10 Mar 2016
  33. Deraniyagala SU (1992) The prehistory of Sri Lanka: an ecological perspective. Memoir 8, 2nd edn. Archaeological Department, ColomboGoogle Scholar
  34. Dickman AM, Hinks AE, Macdonald EA, Burnham D, Macdonald DW (2014) Priorities for global felid conservation. Conserv Biol 29(3):854–864CrossRefGoogle Scholar
  35. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  36. DSL250. (2015) Survey department of Sri Lanka shapefile. (software). Accessed 12 Mar 2016
  37. DWC (2014) The top seven wild Sri Lanka—the leopard. In: Sarathchandra H (ed) Sri Lanka Wildlife 10(1):6–9. Department of Wildlife Conservation, ColomboGoogle Scholar
  38. Edirisinghe JP, Bambaradeniya CNB (2006) Rice fields: an ecosystem rich in biodiversity. J Nat Sci Found Sri Lanka 34(2):57–59CrossRefGoogle Scholar
  39. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol 40:677–697CrossRefGoogle Scholar
  40. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  41. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  42. ESA CCI LC (2016) European Space Agency’s Climate Change Initiative Land Cover map 2010. ESACCI-LC-L4-LCCS-Map-300 m-P5Y-2010-v.1.6.1.tifGoogle Scholar
  43. ESRI (2015) ArcGIS Desktop: Release 10.3.1. Redlands: Environmental Systems Research InstituteGoogle Scholar
  44. Estes JA (2005) Carnivory and trophic cascades in kelp forests. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington D.C., pp 61–80Google Scholar
  45. FAO (2015) Global forest resources assessment 2015. Rome. Accessed 10 Mar 2016
  46. Fattebert J, Balme G, Dickerson T, Slotow R, Hunter L (2015) Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS ONE 10:e0122355CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  48. Fisher JT, Anholt B, Bradbury S, Wheatley M, Volpe JP (2013) Spatial segregation of sympatric marten and fishers: the influence of landscapes and species-scapes. Ecography 36:240–248CrossRefGoogle Scholar
  49. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:1–13CrossRefGoogle Scholar
  50. Gagnon JW, Theimer TC, Dodd NL, Boe S, Schweinsburg RE (2007) Traffic volume alters elk distribution and highway crossings in Arizona. J Wildlife Manag 71(7):2318–2323CrossRefGoogle Scholar
  51. Grassman LI (1999) Ecology and behavior of the Indochinese leopard in Kaeng Krachan National Park, Thailand. Nat Hist Bull Siam Soc 47:77–93Google Scholar
  52. Guggisberg CAW (1975) Wild cats of the world. Taplinger Publishing Company, New YorkGoogle Scholar
  53. Gunasena HPM, Pushpakumara DKNG (2015) Chena cultivation in Sri Lanka. In: Cairns M (ed) Shifting cultivation and environmental change: indigenous people, agriculture and forest conservation. Routledge, New York, pp 199–220Google Scholar
  54. Harihar A, Pandav B, Goyal SP (2011) Responses of leopard Panthera pardus to the recovery of a tiger Panthera tigris population. J Appl Ecol 48(3):806–814CrossRefGoogle Scholar
  55. Hayward MW, Henschel P, O’Brien J, Hofmeyr M, Balme G, Kerley GIH (2006) Prey preferences of the leopard (Panthera pardus). J Zool (Lon) 270:298–313Google Scholar
  56. Inskip C, Zimmermann A (2009) Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1):18–34CrossRefGoogle Scholar
  57. IUCN and UNEP-WCMC (2015) The world database on protected areas (WDPA), Cambridge, UK: UNEP-WCMC. Accessed 12 Mar 2016
  58. Jacobson AP, Gerngross P, Lemeris JR Jr, Schoonover RF, Anco C, Breitenmoser-Würsten C, Durant SM, Farhadinia MS, Henschel P, Kamler JF, Laguardia A, Rostro-Garcia S, Stein AB, Dollar L (2016) Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4:e1974. doi: 10.7717/peerj.1974 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Johnson D (1980) The comparison of usage and availability measurements for evaluating resource preferences. Ecology 61:65–71CrossRefGoogle Scholar
  60. Kittle AM, Watson AC (2008) Panthera pardus ssp. kotiya. In: IUCN 2012. 2012Google Scholar
  61. Kittle AM, Watson AC (2017) Density of leopards (Panthera pardus kotiya) in Horton Plains National Park in the Central Highlands of Sri Lanka. Mammalia. doi: 10.1515/mammalia-2016-0139 Google Scholar
  62. Kittle AM, Fryxell JM, Desy GE, Hamr J (2008) The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates. Oecologia 157:163–175CrossRefPubMedGoogle Scholar
  63. Kittle AM, Watson AC, Kumara PHC, Sanjeewani HKN (2012) Notes on the status, distribution and abundance of the Sri Lankan leopard in the central hills of Sri Lanka. CatNews 56:28–31Google Scholar
  64. Kittle AM, Watson AC, Kumara PHC, Sandanayake SDK, Sanjeewani HKN, Fernando S (2014) Notes on the diet, prey and habitat selection of the Sri Lankan leopard in the central highlands of Sri Lanka. J Threat Taxa 6(9):6214–6221CrossRefGoogle Scholar
  65. Kittle AM, Watson AC, Fernando SP (2017) The ecology and behavior of a protected area Sri Lankan leopard (Panthera pardus kotiya) population. Trop Ecol 57(5):71–86Google Scholar
  66. Kuhn BF (2014) A preliminary assessment of the carnivore community outside Johannesburg, South Africa. S Afr J Wildlife Res 44(1):95–98CrossRefGoogle Scholar
  67. LP DAAC (2016) NASA Shuttle Radar Topography Mission (SRTM). Land Processes Distributed Active Archive Centre (LP DAAC). Accessed 14 Mar 2016
  68. Macdonald DW, Loveridge AJ, Nowell K (2010) Dramatis personae: an introduction to the wild felids. In: Macdonald DW, Loveridge AJ (eds) Biology and conservation of wild felids. Oxford University Press, Oxford, pp 3–58Google Scholar
  69. Marker LL, Dickman AJ (2005) Factors affecting leopard (Panthera pardus) spatial ecology, with particular reference to Namibian farmlands. S Afr J Wildlife Res 35:105–115Google Scholar
  70. Mateo Sánchez MC, Cushman SA, Saura S (2013) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci. doi: 10.1080/13658816.2013.776684 Google Scholar
  71. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer Software Programs Products by authors Univ. Massachusetts, Amherst. Accessed 2 May 2016
  72. McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol 31:1161–1175CrossRefGoogle Scholar
  73. Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  74. Miththapala S, Seidensticker J, O’Brien SJ (1996) Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation. Conserv Biol 4:1115–1132CrossRefGoogle Scholar
  75. Odden M, Wegge P, Fredriksen T (2010) Do tigers displace leopards? If so, why? Ecol Res 25:875–881CrossRefGoogle Scholar
  76. Paine RT (1966) A note on trophic complexity and community stability. Am Nat 103(929):91–93CrossRefGoogle Scholar
  77. Perera MP (1997a) Surface water. In: Perera MP, de Silva MBG, Godellawatta H (eds) Somasekaram T. Arjuna’s atlas of Sri Lanka, Dehiwala, pp 23–26Google Scholar
  78. Perera MP (1997b) Paddy. In: Perera MP, de Silva MBG, Godellawatta H (eds) Somasekaram T. Arjuna’s atlas of Sri Lanka, Dehiwala, pp 85–87Google Scholar
  79. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  80. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  81. Phillips SJ, Düdik M, Elith J, Graham CH, Lehmann A, Leathwick JR, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  82. Pimm SL, Raven PR (2000) Biodiversity: extinction by numbers. Nature 403:843–845CrossRefPubMedGoogle Scholar
  83. Power M, Tilman D, Estes J, Menge B, Bond W, Mills L, Daily G, Castilla J, Lubchenco J, Paine R (1996) Challenges in the quest for keystones. Bioscience 46:609–620CrossRefGoogle Scholar
  84. Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143(4):939–945CrossRefGoogle Scholar
  85. Redford KH (2005) Introduction: how to value large carnivorous animals. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington D.C., pp 1–6Google Scholar
  86. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484CrossRefPubMedGoogle Scholar
  87. Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737CrossRefGoogle Scholar
  88. Rostro-Garcia S, Tharchen L, Abade L, Astaras C, Cushman SA, Macdonald DW (2016) Scale dependence of felid predation risk: identifying predictors of livestock kills by tiger and leopard in Bhutan. Landsc Ecol 31:1277–1298CrossRefGoogle Scholar
  89. Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM, Peterson AT, Owens HL, Lira-Noriega A (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol Model 237–238:11–22. doi: 10.1016/j.ecolmodel.2012.04.001 CrossRefGoogle Scholar
  90. Sergio F, Newton I, Marchesi L, Pedrini P (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. J Appl Ecol 43:1049–1055CrossRefGoogle Scholar
  91. Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst 39:1–19CrossRefGoogle Scholar
  92. Shehzad W, Nawaz MA, Pompanon F, Coissac E, Riaz T, Shah SA, Taberlet P (2015) Forest without prey: livestock sustain a leopard Panthera pardus population in Pakistan. Oryx 49(2):248–253CrossRefGoogle Scholar
  93. Shirk AJ, Raphael MG, Cushman SA (2014) Spatiotemporal variation in resource selection: insights from the American marten (Martes americana). Ecol Appl 24:1434–1444CrossRefPubMedGoogle Scholar
  94. Somasekaram T (1997) Land use. In: Perera MP, de Silva MBG, Godellawatta H (eds) Somasekaram T. Arjuna’s atlas of Sri Lanka, Dehiwala, pp 82–84Google Scholar
  95. Stander PE, Haden PJ, Kaqece II, Ghau II (1997) The ecology of asociality in Namibian leopards. J Zool (Lon) 242:343–364CrossRefGoogle Scholar
  96. Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Miquelle D, Rostro-Garcia 12S, Kamler JF, Laguardia A, Khorozyan I, Ghoddousi A (2016) Panthera pardus. The IUCN Red List of Threatened Species e. T15954A102421779. Accessed 5 Dec 2016
  97. Steneck RS (2005) An ecological context for the role of large carnivores in conserving biodiversity. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington D.C., pp 9–33Google Scholar
  98. Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distributions models. PLoS ONE. doi: 10.1371/journal.pone.0055158 PubMedGoogle Scholar
  99. Terborgh J, Lopez L, Nunez PV, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926CrossRefPubMedGoogle Scholar
  100. Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landsc Ecol 17:569–586CrossRefGoogle Scholar
  101. Timm BC, McGarigal K, Cushman SA, Ganey JL (2016) Multi-scale Mexican spotted owl nest/roost habitat selection in Arizona and comparison with single-scale modeling results. Landsc Ecol 31:1209–1225CrossRefGoogle Scholar
  102. Turner A (1997) The big cats and their fossil relatives: an illustrated guide to their evolution and natural history. Columbia University Press, New YorkGoogle Scholar
  103. Uphyrkina O, Johnson W, Quigly H, Miquelle D, Markar L, Bush M, O’Brien SJ (2001) Phylogenetics, genome diversity and origin of modern leopard (Panthera pardus). Mol Ecol 10:2617–2633CrossRefPubMedGoogle Scholar
  104. Vergara M, Cushman SA, Urra F, Ruiz-González A (2016) Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc Ecol. doi: 10.1007/s10980-015-0307-0 Google Scholar
  105. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342CrossRefPubMedGoogle Scholar
  106. Wasserman TN, Cushman SA, Walin DO, Hayden J (2012) Multi-scale habitat relationships of Martes americana in northern Idaho, U.S.A. USDA Forest Service RMRS Research Paper RMRS-RP-94Google Scholar
  107. Watson AC, Kittle AM (2004) Distribution and status of the Sri Lankan leopard—a short report. CatNews 41:12–15Google Scholar
  108. Wegmann M, Santini L, Leutner B, Safi K, Rocchini D, Bevanada M, Latifi H, Dech S, Rondinini C (2014) Role of African protected areas in maintaining connectivity for large mammals. Philos T Roy Soc B 369:20130193CrossRefGoogle Scholar
  109. Whittington J, St Cassady, Clair C, Mercer G (2005) Spatial responses of wolves to roads and trails in mountain valleys. Ecol Appl 15(2):543–553CrossRefGoogle Scholar
  110. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar
  111. Yokoyama Y, Lambeck K, De Deckker P, Johnson P, Fifield LK (2000) Timing of the last glacial maximum from observed sea-level minima. Nature 406:713–716CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Andrew M. Kittle
    • 1
    Email author
  • Anjali C. Watson
    • 1
  • Samuel A. Cushman
    • 2
    • 3
  • David. W. Macdonald
    • 3
  1. 1.The Wilderness and Wildlife Conservation TrustColombo 04Sri Lanka
  2. 2.U.S. Forest ServiceRocky Mountain Research StationFlagstaffUSA
  3. 3.Wildlife Conservation Research Unit, Department of Zoology, The Recanti-Kaplan CentreUniversity of OxfordOxonUK

Personalised recommendations