Skip to main content

Advertisement

Log in

Evidence of neotropical anuran community disruption on rice crops: a multidimensional evaluation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Agricultural expansion is a major driver of biodiversity loss, especially in the megadiverse tropics. Rice is among the world’s most important food crops, invariably affecting biodiversity worldwide. Although the effects of habitat conversion to rice crops on biodiversity are not completely understood, landscape modification often creates conditions that benefit some species and excludes others. We conducted an integrative evaluation of the effects that habitat conversion to irrigated rice crops has on anuran communities from a Cerrado-Amazon ecotone. We adopted a multidimensional approach to compare anuran communities from agricultural and pristine environments considering (i) taxonomic metrics; (ii) functional and phylogenetic diversity; (iii) selected and excluded traits and (iv) body condition indices. When compared to their pristine counterparts, agricultural waterbodies showed increased functional divergence and decreased species diversity and functional richness. Furthermore, agricultural anuran communities exhibited lower phylogenetic diversity. Nonetheless, taxonomic diversity did not vary significantly, suggesting that it should not be used without complementary metrics. Species with small range, habitat specialization, small clutches and large body size were excluded from rice crops. Furthermore, frogs showed lower body condition in crops than in pristine areas. Understanding how species traits correlate with specific responses to agriculture will allow better predictions of the functional effects of anthropogenic land-use. Maintaining high diversity in anthropogenic environments is important for ecosystem resilience because diverse communities are more likely to hold multiple species capable of contributing to ecological functions. Our results show that converting natural vegetation to irrigated rice crops drives many species to local extinction, and resilient species to exhibit lower body condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen CR, Gunderson L, Johnson AR (2005) The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems 8:958–966

    Article  Google Scholar 

  • Arregoitia LD, Blomberg SP, Fisher DO (2013) Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk. Proc Biol Sci 280:1092

    Google Scholar 

  • Attademo AM, Cabagna-Zenklusen M, Lajmanovich RC, Peltzer PM, Junges C, Bassó A (2011) B-esterase activities and blood cell morphology in the frog Leptodactylus chaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina). Ecotoxicology 20:274–282

    Article  CAS  PubMed  Google Scholar 

  • Bachman G, Widemo F (1999) Relationships between body composition, body size and alternative reproductive tactics in a lekking sandpiper, the Ruff (Philomachus pugnax). Funct Ecol 13(3):411–416

    Article  Google Scholar 

  • Bambaradeniya, CNB, Amarasinghe, FP (2004) Biodiversity associated with the rice field agro-ecosystem in Asian Countries: a brief review. Working Paper 63. International Water Management Institute, Colombo Sri Lanka

  • Begon M, Sait SM, Thompson DJ (1996) Predator-prey cycles with period shifts between two-and three-species systems. Nature 381(6580):311

    Article  CAS  Google Scholar 

  • Bielby J, Cardillo M, Cooper N, Purvis A (2009) Modelling extinction risk in multispecies data sets: Phylogenetically independent contrasts versus decision trees. Biodivers Conserv 19:113–127

    Article  Google Scholar 

  • Blackwell GL (2002) A potential multivariate index of condition for small mammals. New Zeal J Zool 29:195–203

    Article  Google Scholar 

  • Blaustein AR, Han BA, Relyea RA, Johnson PT, Buck JC, Gervasi SS, Kats LB (2011) The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Ann New York Acad Sci 1223(1):108–119

    Article  Google Scholar 

  • Botts EA, Erasmus BFN, Alexander GJ (2013) Small range size and narrow niche breadth predict range contractions in South African frogs. Glob Ecol Biogeogr 22:567–576

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brodeur JC, Suarez RP, Natale GS, Ronco AE, Elena Zaccagnini M (2011) Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicol Environ Saf 74:1370–1380

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278

    Article  Google Scholar 

  • Cooper N, Bielby J, Thomas GH, Purvis A (2008) Macroecology and extinction risk correlates of frogs. Glob Ecol Biogeogr 17:211–221

    Article  Google Scholar 

  • Cornwell WK, Schwilk LDW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • Costa RN, Nomura F (2016) Measuring the impacts of roundup Original® on fluctuating asymmetry and mortality in a neotropical tadpole. Hydrobiologia 765(1):85–96

    Article  Google Scholar 

  • Czech H, Parsons K (2002) Agricultural wetlands and waterbirds: a review. Waterbirds 25:56–65

    Article  Google Scholar 

  • Davic RD, Welsh HH (2004) On the ecological roles of salamanders. Annu Rev Ecol Evol Syst 35:405–434

    Article  Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  • Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344(6181):296–299

    Article  CAS  PubMed  Google Scholar 

  • Dĺaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Article  Google Scholar 

  • Dodd CK (2010) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, Oxford

    Google Scholar 

  • Elphick CS, Oring LW (2003) Conservation implications of flooding rice fields on winter waterbird communities. Agric Ecosyst Environ 94:17–29

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • FAO (2011) The state of food and agriculture Women in Agriculture Closing the Gender gap for Development FAO

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Frishkoff LO, Karp DS, M’Gonigle LK, Mendenhall CH, Zook J, Kremen C, Hadly E, Daily GC (2014) Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345:1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sá RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. Bull Am Museum Nat Hist 297:1–291

    Article  Google Scholar 

  • García-Barrios L, Galván-Miyoshi YM, Valdivieso-Pérez IA, Masera OR, Bocco G, Vandermeer J (2009) Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59:863–873

    Article  Google Scholar 

  • Gilroy JJ, Medina Uribe CA, Haugaasen T, Edwards DP (2014) Effect of scale on trait predictors of species responses to agriculture. Conserv Biol 29:463–472

    Article  PubMed  Google Scholar 

  • Gotelli NJ, McCabe DJ (2002) Species co-occurrence: A meta-analysis of J M Diamond’s assembly rules model. Ecology 83:2091–2096

    Article  Google Scholar 

  • Hanspach J, Fischer J, Ikin K, Stott J, Law BS (2012) Using trait-based filtering as a predictive framework for conservation: a case study of bats on farms in southeastern Australia. J Appl Ecol 49(4):842–850

    Article  Google Scholar 

  • Helmus MR, Keller WB, Paterson MJ, Yan ND, Cannon CH, Rusak JA (2010) Communities contain closely related species during ecosystem disturbance. Ecol Lett 13:162–174

    Article  PubMed  Google Scholar 

  • Heyer WR (2005) Variation and taxonomic clarification of the large species of the Leptodactylus pentadactylus species group (Amphibia: Leptodactylidae) from Middle America, Northern South America, and Amazonia. W Arq Zool S Paulo 37:269–348

    Article  Google Scholar 

  • Hidasi-Neto J, Barlow J, Cianciaruso MV (2012) Bird functional diversity and wildfires in the Amazon: the role of forest structure. Anim Conserv 15:407–415

    Article  Google Scholar 

  • Hyne RV, Spolyarich N, Wilson SP, Patra RW, Byrne M, Gordon G, Sánchez-Bayo F, Palmer CG (2009) Distribution of frogs in rice bays within an irrigated agricultural area: links to pesticide usage and farm practices. Environ Toxicol Chem 28:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • IBGE Instituto Brasileiro de Geografia e Estatística Sistema IBGE de recuperação automática—SIDRA. (2005) Available from: http://www.sidra.ibge.gov.br

  • Isaac NJB, Redding DW, Meredith HM, Safi K (2012) Phylogenetically-informed priorities for amphibian conservation. PLoS ONE 7:e43912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Karraker NE, Welsh HH (2006) Long-term impacts of even-aged timber management on abundance and body condition of terrestrial amphibians in Northwestern California. Biol Conserv 131:132–140

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kivlin SN, Winston GC, Goulden ML, Treseder KK (2014) Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecol 12:14–25

    Article  Google Scholar 

  • Kole PC, Chakraborty NR, Bhat JS (2010) Analysis of variability, correlation and path coefficients in induced mutants of aromatic non-basmati rice. Trop Agric Res Ext, 11

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2015) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 10–12

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91(2):386–398

    Article  PubMed  Google Scholar 

  • Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Liaw A, Wiener M (2015) Package “randomForest”. http://cran.r-project.org/web/packages/randomForest/randomForest.pdf

  • Lips KR, Reeve JD, Witters LR (2003) Ecological traits predicting amphibian population declines in Central America. Conserv Biol 17:1078–1088

    Article  Google Scholar 

  • Maitner BS, Rudgers JA, Dunham AE, Whitney KD (2012) Patterns of bird invasion are consistent with environmental filtering. Ecography 35(7):614–623

    Article  Google Scholar 

  • Manly BF (2006) Randomization, bootstrap and Monte Carlo methods in biology, vol 70. CRC Press, Boca Raton

    Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional and functional evenness divergence: the primary of functional components diversity. Oikos 111:112–118

    Article  Google Scholar 

  • McIntyre S (2008) The role of plant leaf attributes in linking land use to ecosystem function in temperate grassy vegetation. Agr Ecosyst Environ 128(4):251–258

    Article  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  • Murray KA, Rosauer D, McCallum H, Skerratt LF (2011) Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proc Biol Sci 278:1515–1523

    Article  PubMed  Google Scholar 

  • Neckel-Oliveira S (2007) Effects of forest disturbance on breeding habitat availability for two species of anurans in the amazon. Phyllomedusa 2007:186–192

    Google Scholar 

  • Newbold T, Scharlemann JPW, Butchart SHM, Sekercioglu ÇH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc Lond B Biol Sci 280(1750):20122131

    Article  Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Evol Syst 35:89–111

    Article  Google Scholar 

  • Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Hara RBO, Gavin L, Solymos P, Stevens MHH, Wagner H (2010) Package “vegan”. R. Package Version 2.0

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Gavin L, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R. Package Version 2.0 e7

  • Olalla-Tárraga MÁ, Mcinnes L, Bini LM, Diniz-Filho JAF, Fritz SA, Hawkins BA, Hortal J, Orme CDL, Rahbek C, Rodríguez MÁ, Purvis A (2011) Climatic niche conservatism and the evolutionary dynamics in species range boundaries: Global congruence across mammals and amphibians. J Biogeogr 38(12):2237–2247

    Article  Google Scholar 

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–193

    Article  PubMed  Google Scholar 

  • Oliver TH, Smithers RJ, Bailey S, Walmsley CA, Watts K (2012) A decision framework for considering climate change adaptation in biodiversity conservation planning. J Appl Ecol 49:1247–1255

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Letters 9(6):741–758

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16(2):391–409

    Article  Google Scholar 

  • R Core Team (2014) Team. R: A language and environment for statistical computing

  • Ribeiro, J, Colli, G R, Batista, R, & Soares, A (2017) Landscape and local correlates with anuran taxonomic, functional and phylogenetic diversity in rice crops. Landsc Ecol 1–14

  • Rocha RG, Ferreira E, Costa BMA, Martins ICM, Leite YLR, Costa LP, Fonseca C (2011) Small mammals of the mid-Araguai River in central Brazil, with the description of a new species of climbing rat. Zootaxa 2789:1–34

    Google Scholar 

  • Santos AB, Rabelo RR (2004) Cultivo do Arroz Irrigado no Estado do Tocantins. Sistemas de produção-EMBRAPA

  • Schweiger O, Maelfait JP, Wingerden WV, Hendrickx F, Billeter R, Speelmans M, Bukacek R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42(6):1129–1139

    Article  Google Scholar 

  • Schweiger O, Musche M, Bailey D, Billeter R, Diekötter T, Hendrickx F, Herzog F, Liira J, Maelfait JP, Speelmans M, Dziock F (2007) Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116:461–472

    Article  Google Scholar 

  • Sodhi NS, Bickford D, Diesmos AC, Lee TM, Koh LP, Brook BW, Sekercioglu CH, Bradshaw CJA (2008) Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE 3:1–8

    Article  CAS  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140

    Article  Google Scholar 

  • Swenson NG (2014) Functional and phylogenetic ecology in R. Springer, New York

    Book  Google Scholar 

  • Therneau TM, Atkinson EJ (1997) An Introduction to Recursive Partitioning Using the RPART Routines Program. (Vol. 61, p. 452). Mayo Foundation: Technical report

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Vandewalle M, Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Silva PM, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19:2921–2947

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Villéger S, Ramos Miranda J, Flores Hernández D, Mouillot D (2010) Contrasting changes in taxonomic vs functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Wells KD (2010) The ecology and behavior of amphibians. University of Chicago Press

  • Williams-Guillén K, Perfecto I (2010) Effects of agricultural intensification on the assemblage of leaf-nosed bats (Phyllostomidae) in a coffee landscape in Chiapas, Mexico. Biotropica 42:605–613

    Article  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  PubMed  Google Scholar 

  • Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D (2006) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–120

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to Fausto Nomura for helping with the sampling design, and Rita Gomes Rocha, for the helping during part of the fieldwork. Joana Ribeiro is a PhD candidate with a fellowship (reference SFRH/BD/51414/2011) awarded by FCT (Foundation for Science and Technology). Guarino R. Colli wishes to thank Coordenação de Apoio à Formação de Pessoal de Nível Superior—CAPES, Conselho Nacional do Desenvolvimento Científico e Tecnológico—CNPq and Fundação de Apoio à Pesquisa do Distrito Federal—FAPDF for financial support. Eduardo Ferreira was supported by a post-doctoral grant from FCT (Program POPHQREN, ref: SFRH/BPD/72895/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Ribeiro.

Additional information

Communicated by Dirk Sven Schmeller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J., Colli, G.R., Caldwell, J.P. et al. Evidence of neotropical anuran community disruption on rice crops: a multidimensional evaluation. Biodivers Conserv 26, 3363–3383 (2017). https://doi.org/10.1007/s10531-017-1410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1410-0

Keywords

Navigation