Detecting long-term occupancy changes in Californian odonates from natural history and citizen science records

Abstract

In a world of rapid environmental change, effective biodiversity conservation and management relies on our ability to detect changes in species occurrence. While long-term, standardized monitoring is ideal for detecting change, such monitoring is costly and rare. An alternative approach is to use historical records from natural history collections as a baseline to compare with recent observations. Here, we combine natural history collection data with citizen science observations within a hierarchical Bayesian occupancy modeling framework to identify changes in the occupancy of Californian dragonflies and damselflies (Odonata) over the past century. We model changes in the probability of occupancy of 34 odonate species across years and as a function of climate, after correcting for likely variation in detection probability using proxies for recorder effort and seasonal variation. We then examine whether biological traits can help explain variation in temporal trends. Models built using only opportunistic records identify significant changes in occupancy across years for 14 species, with eight of those showing significant declines and six showing significant increases in occupancy in the period 1900–2013. These changes are consistent with estimates obtained using more standardized resurvey data, regardless of whether resurvey data are used individually or in conjunction with the opportunistic dataset. We find that species increasing in occupancy over time are also those whose occupancy tends to increase with higher minimum temperatures, which suggests that these species may be benefiting from increasing temperatures across California. Furthermore, these species are also mostly habitat generalists, whilst a number of habitat specialists display some of the largest declines in occupancy across years. Our approach enables more robust estimates of temporal trends from opportunistic specimen and observation data, thus facilitating the use of these data in biodiversity conservation and management.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abbott JC, Broglie D (2005) OdonataCentral.com: a model for the web-based delivery of natural history information and citizen science. Am Entomol 51(4):240–243

    Article  Google Scholar 

  2. Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  3. Ball-Damerow JE, M’Gonigle LK, Resh VH (2014a) Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodivers Conserv 23:2107–2126

    Article  Google Scholar 

  4. Ball-Damerow JE, M’Gonigle LK, Resh VH (2014b) Local and regional factors influencing assemblages of dragonflies and damselflies (Odonata) in California and Nevada. J Insect Conserv 18:1027–1036

    Article  Google Scholar 

  5. Ball-Damerow JE, Oboyski PT, Resh VH (2015) California dragonfly and damselfly (Odonata) database: temporal and spatial distribution of species records collected over the past century. ZooKeys 482:67–89

    Article  Google Scholar 

  6. Ballesteros-Meijia L, Kitching IJ, Jetz W, Nagel P, Beck J (2013) Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Global Ecol Biogeogr 22:586–595

    Article  Google Scholar 

  7. Barnes M, Szabo JK, Morris WK, Possingham H (2014) Evaluating protected area effectiveness using bird lists in the Australian wet tropics. Divers Distrib 21:368–378

    Article  Google Scholar 

  8. Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. P Natl Acad Sci USA 110:4656–4660

    CAS  Article  Google Scholar 

  9. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 3:1

    Google Scholar 

  10. Beaman RS, Cellinese N (2012) Mass digitization of scientific collections: new opportunities to transform the use of biological specimens and underwrite biodiversity science. ZooKeys 209:7–17

    Article  Google Scholar 

  11. Boakes EH, McGowan JK, Fuller RA, Chang-quing D, Clark NE, O’Connor K, Mace GM (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol 8(6):e1000385. doi:10.1371/journal.pbio.1000385

    Article  PubMed  PubMed Central  Google Scholar 

  12. Breed GA, Stichter S, Crone EE (2013) Climate-driven changes in northeastern US butterfly communities. Nat Clim Chang 3:142–145

    Article  Google Scholar 

  13. Clausnitzer V (2003) Dragonfly communities in coastal habitats of Kenya: indication of biotope quality and the need of conservation measures. Biodivers Conserv 12:333–356

    Article  Google Scholar 

  14. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9(4):222–228

    Article  Google Scholar 

  15. de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R (2016) Programming with models: writing statistical algorithms for general model structures with NIMBLE. J Comput Gr Stat 0:1–28

    Google Scholar 

  16. Dragonflies of California: California dragonflies and damselflies (2014) http://bigsnest.members. sonic.net/Pond/dragons/

  17. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710

    CAS  Article  Google Scholar 

  18. Dupont YL, Damgaard C, Simonsen V (2011) Quantitative historical change in bumblebee (Bombus spp.) Assemblages of red clover fields. PLoS ONE 6:1–7

    Google Scholar 

  19. Ferro ML, Flick AJ (2015) “Collection Bias” and the importance of natural history collections in species habitat modeling: a case study using Thoracophorus costalis Erichson (Coleoptera: Staphylinidae: Osoriinae), with a critique of GBIF.org. Coleops Bull 69(3):415–425

    Article  Google Scholar 

  20. Foden WB, Butchart SHM, Stuart SN et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8:e65427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  22. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. CRC/Chapman and Hall, Boca Raton

    Google Scholar 

  23. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  24. Guralnick R, Van Cleve J (2005) Strengths and weaknesses of museum and national survey data sets for predicting regional species richness: comparative and combined approaches. Divers Distrib 11:349–359

    Article  Google Scholar 

  25. Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  26. Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a review. Ent J Odonatol 11(2):131–153

    Article  Google Scholar 

  27. Hassall C, Thompson DJ, French GC, Harvey IF (2007) Historical changes in the phenology of British Odonata are related to climate. Glob Change Biol 13:933–941

    Article  Google Scholar 

  28. Hefley TJ, Hooten MB (2016) Hierarchical species distribution models. Curr Landsc Ecol Reports. doi:10.1007/s40823-016-0008-7

    Google Scholar 

  29. Hickling R, Roy DB, Hill JK, Thomas CD (2005) A northward shift of range margins in British Odonata. Glob Change Biol 11:502–506

    Article  Google Scholar 

  30. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  31. Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287

    Article  PubMed  Google Scholar 

  32. Isaac NJB, Pocock MJO (2015) Bias and information in biological records. Biol J Lin Soc 115:522–531

    Article  Google Scholar 

  33. Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB (2014) Statistics for citizen science: extracting signals of change from noisy ecological data. Method Ecol Evol 5:1052–1060

    Article  Google Scholar 

  34. Jeppsson T, Lindhe A, Gärdenfors U, Forslund P (2010) The use of historical collections to estimate population trends: a case study using Swedish longhorn beetles (Coleoptera: Cerambycidae). Biol Cons 143:1940–1950

    Article  Google Scholar 

  35. Kamp J, Oppel S, Heldbjerg H, Nyegaard T, Donald PF (2016) Unstructured citizen science data fail to detect long-term population declines of common birds in Denmark. Divers Distrib 22:1024–1035

  36. Korkeamaki E, Suhonen J (2002) Distribution and habitat specialization of species affect local extinction in dragonfly Odonata populations. Ecography 25:459–465

    Article  Google Scholar 

  37. Link WA, Sauer JR, Niven DK (2006) A hierarchical model for regional analysis of population change using Christmas Bird Count data, with application to the American Black Duck. The Condor 108:13–24

    Article  Google Scholar 

  38. Lister AM (2011) Natural history collections as sources of long-term datasets. Trends Ecol Evol 26:153–154

    Article  PubMed  Google Scholar 

  39. Liu J, Sabatti C (2000) Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87:353–369

    Article  Google Scholar 

  40. Manolis T (2003) Dragonflies and Damselflies of California. University of California Press, Berkeley

    Google Scholar 

  41. Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246

    Article  PubMed  Google Scholar 

  42. Meyer C, Kreft H, Guralnick R, Jetz W (2015) Global priorities for an effective information basis of biodiversity distributions. Nat Commun. doi:10.1038/ncomms9221

    Google Scholar 

  43. Nakagawa S, Schielzeth H (2012) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  44. NIMBLE Development Team (2015) NIMBLE: An R Package for Programming with BUGS models, Version 0.4

  45. O’Connell AF, Gilbert AT, Hatfield JS (2004) Contribution of natural history collection data to biodiversity assessment in national parks. Conserv Biol 18:1254–1261

    Google Scholar 

  46. Odonata Central: An online resource for the distribution and identification of Odonata (2014). http://www.odonatacentral.org

  47. Paulson D (2009) Dragonflies and damselflies of the West. Princeton University Press, Princeton

    Google Scholar 

  48. Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15:648–657

    Article  Google Scholar 

  49. Powney GD, Cham SSA, Smallshire D, Isaac NJB (2015) Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3:e1410

    Article  PubMed  PubMed Central  Google Scholar 

  50. PRISM Climate Group, Oregon State University (2014) http://prism.oregonstate.edu, created November 30, 2014

  51. Pyke GH, Ehrlich PR (2010) Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev 85:247–266

    Article  PubMed  Google Scholar 

  52. R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Core Team, Vienna

    Google Scholar 

  53. Roberts RL, Donald PF, Green RE (2007) Using simple species lists to monitor trends in animal populations: new methods and a comparison with independent data. Anim Conserv 622(10):332–339

    Article  Google Scholar 

  54. Royle JA, Kéry M (2007) A Bayesian state-space formulation of dynamic occupancy models. Ecology 88:1813–1823

    Article  PubMed  Google Scholar 

  55. Ruesink JL (2005) Global analysis of factors affecting the outcome of freshwater fish introductions. Conserv Biol 19:1883–1893

    Article  Google Scholar 

  56. Ruete A (2015) Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps. Biodivers Data J 3:e5361

    Article  Google Scholar 

  57. Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Cons 78:279–288

    Article  Google Scholar 

  58. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  59. Shaffer HB, Fisher RN, Davidson C (1998) The role of natural history collections in documenting species declines. Trends Ecol Evol 13(1):27–30

    CAS  Article  PubMed  Google Scholar 

  60. Silvertown J (2009) A new dawn for citizen science. Trends Ecol Evol 24:467–471

    Article  PubMed  Google Scholar 

  61. Smith J, Samways MJ, Taylor S (2007) Assessing riparian quality using two complementary sets of bioindicators. Biodiv Conserv 16:2695–2713

    Article  Google Scholar 

  62. Sólymos P, Lele S, Bayne E (2012) Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics 23:197–205

    Article  Google Scholar 

  63. Suhling F, Sahlén G, Martens A, Marais E, Schutte C (2006) Dragonfly assemblages in arid tropical environments: a case study from western Namibia. Biodivers Conserv 15:311–332

    Article  Google Scholar 

  64. Szabo JK, Vesk PA, Baxter PWJ, Possingham HP (2010) Regional avian species declines estimated from volunteer-collected long-term data using List-length Analysis. Ecol App 20:2157–2169

    Article  Google Scholar 

  65. Tewksbury JJ, Anderson JGT, Bakker JD et al (2014) Natural history’s place in science and society. Bioscience 64:300–310

    Article  Google Scholar 

  66. Turek D, de Valpine P, and Paciorek CJ (2016) Efficient Markov Chain Monte Carlo Sampling for Hierarchical Hidden Markov Models. arXiv preprint arXiv: 1601.02698

  67. Vall-llosera M, Sol D (2009) A global risk assessment for the success of bird introductions. J Appl Ecol 46:787–795

    Article  Google Scholar 

  68. van Strien AJ, Termaat T, Groenendijk D, Mensing V, Kéry M (2010) Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists. Basic Appl Ecol 11:495–503

    Article  Google Scholar 

  69. van Strien AJ, Termaat T, Kalkman V, Prins M, De Knijf G, Gourmand AL, Houard X, Nelson B, Plate C, Prentice S, Regan E, Smallshire D, Vanappelghem C, Vanreusel W (2013) Occupancy modelling as a new approach to assess supranational trends using opportunistic data: a pilot study for the damselfly Calopteryx splendens. Biodiv Conserv 22:673–686

    Article  Google Scholar 

  70. van Strien AJ, Bekker DL, La Haye MJJ, van der Meij T (2015) Trends in small mammals derived from owl pellet data using occupancy modelling. Mammalian Biology 80:340–346

    Article  Google Scholar 

  71. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    CAS  Article  PubMed  Google Scholar 

  72. Wieczorek J, Guo QG, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int J Geogr Inf Sci 18:745–767

    Article  Google Scholar 

  73. Williams SE, Middleton J (2008) Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change. Divers Distrib 14:69–77

    Article  Google Scholar 

  74. Zeilinger AR, Rapacciuolo G, Turek D, Oboyski PT, Almeida RPP, Roderick GK (2017) Museum specimen data reveal emergence of plant disease may be linked to increases in the insect vector population. Ecol Appl. doi:10.1002/eap.1569

    PubMed  Google Scholar 

Download references

Acknowledgements

This article is a product of the Berkeley Initiative for Global Change Biology, with support from the William M. Keck Foundation and the Gordon and Betty Moore Foundation. This research was also supported by the National Science Foundation under Grant No. DBI 0956389 and the Margaret C. Walker Fund for teaching and research in systematic entomology. We thank J. C. Abbot, K. Biggs, R. W. Garrison, S. D. Gaimari, T. D. Manolis and D. R. Paulson for contribution of data, and Gordon Nishida, Jessica Rothery, among others, for assistance with georeferencing species occurrence localities. We also thank M. F. O’Brien, W. F Mauffray, N. D. Penny, D. Yanega, S. Heydon, M. S. Caterino, B. V. Brown, and M. A. Wall for providing assistance with California Odonata specimens.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Rapacciuolo.

Additional information

Communicated by Andreas Schuldt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 142 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rapacciuolo, G., Ball-Damerow, J.E., Zeilinger, A.R. et al. Detecting long-term occupancy changes in Californian odonates from natural history and citizen science records. Biodivers Conserv 26, 2933–2949 (2017). https://doi.org/10.1007/s10531-017-1399-4

Download citation

Keywords

  • Bayesian occupancy models
  • Population change
  • Natural history collections
  • Citizen science
  • Detection bias
  • Dragonflies
  • Traits
  • Temperature
  • NIMBLE