Biodiversity and Conservation

, Volume 26, Issue 12, pp 2893–2909 | Cite as

Wood-inhabiting bryophyte communities are influenced by different management intensities in the past

  • M. Táborská
  • J. Procházková
  • A. Lengyel
  • T. Vrška
  • L. Hort
  • P. Ódor
Original Paper


Many studies have underlined the fact that once forest continuity is broken, communities of wood-inhabiting organisms may never be restored to their original status. However, only a few studies have actually presented results from sites that have current old-growth structure, and where the history of human interventions is known. In this study we compared the species richness, nestedness, beta diversity, and composition of bryophytes from living trunks and dead logs of beech (Fagus sylvatica) in seven forest stands in the Czech Republic with old-growth structure and various histories of past human impact. Our analysis showed that these communities are nested and that their beta diversity is lower than random. There was a significant proportion of shared species, and rare species were present only in the most heterogeneous and the least man affected habitats. We found that bryophyte communities of forests with more intensive past management were significantly impoverished in terms of both species richness and composition. Beta diversity was not related to management history and reflected current habitat heterogeneity. The effect of decay stage on species richness and beta diversity was stronger than the site effect. Our results demonstrate that the protection of current natural beech-dominated forests and improvements to their connectivity in fragmented landscapes are crucial for the survival and restoration of the diversity of wood-inhabiting bryophytes.


Beech Beta diversity Bryophytes Central Europe Dead wood Management history 



The authors are grateful to D. Adam for the preparation of data from stem position maps and S. Kubešová for help with identification of problematic species of bryophytes. David Hardekopf kindly improved the English of the manuscript. The study was supported by the project Deadwood decomposition dynamics in natural temperate forests (GAP504/13-27454S), data were collected in the framework of the project Monitoring of natural forests of the Czech Republic (EHP-CZ02-OV-1-021-2014). Hungarian authors were supported by the National Research, Development and Innovation Office (GINOP 2.3.3-15-2016-00019). Jana Procházková was supported by the scholarship granted by Ostrava city.

Supplementary material

10531_2017_1395_MOESM1_ESM.pdf (7 kb)
Supplementary material 1 (PDF 6 kb)
10531_2017_1395_MOESM2_ESM.xlsx (90 kb)
Supplementary material 2 (XLSX 90 kb)


  1. Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  2. Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi: 10.1111/j.1461-0248.2010.01552.x CrossRefPubMedGoogle Scholar
  3. Andersson LI, Hytteborn H (1991) Bryophytes and decaying wood: a comparison between managed and natural forest. Holarct Ecol 14:121–130Google Scholar
  4. Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382CrossRefPubMedGoogle Scholar
  5. Barbe M, Fenton NJ, Bergeron Y, Vesk P (2016) So close and yet so far away: long-distance dispersal events govern bryophyte metacommunity reassembly. J Ecol 104:1707–1719. doi: 10.1111/1365-2745.12637 CrossRefGoogle Scholar
  6. Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537. doi: 10.1016/j.foreco.2009.01.053 CrossRefGoogle Scholar
  7. Berglund H, Jonsson BG (2003) Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biol Conserv 112:319–328. doi: 10.1016/S0006-3207(02)00329-4 CrossRefGoogle Scholar
  8. Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Schlüter H, Weber H (eds) (2003) Map of the natural vegetation of Europe. Bundesamt für Naturschutz, BonnGoogle Scholar
  9. Borcard D, Gillet F et al (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  10. Box EO, Fujiwara K (2005) Vegetation types and their broad-scale distribution. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 106–128Google Scholar
  11. Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol Bull 53:77–94Google Scholar
  12. Bruun HH, Moen J, Virtanen R et al (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46. doi: 10.1111/j.1654-1103.2006.tb02421.x CrossRefGoogle Scholar
  13. Carvalho JC, Cardoso P, Borges PAV et al (2013) Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 122:825–834. doi: 10.1111/j.1600-0706.2012.20980.x CrossRefGoogle Scholar
  14. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  15. Crawley MJ (2007) The R book. Wiley, HobokenCrossRefGoogle Scholar
  16. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. doi: 10.1111/jbi.12130 CrossRefGoogle Scholar
  17. Fedrowitz K, Koricheva J, Baker SC et al (2014) Can retention forestry help conserve biodiversity? A meta-analysis. J Appl Ecol 51:1669–1679. doi: 10.1111/1365-2664.12289 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manag 260:939–947. doi: 10.1016/j.foreco.2010.06.011 CrossRefGoogle Scholar
  19. Flensted KK, Bruun HH, Ejrnaes R et al (2016) Red-listed species and forest continuity—a multi-taxon approach to conservation in temperate forests. For Ecol Manag 378:144–159. doi: 10.1016/j.foreco.2016.07.029 CrossRefGoogle Scholar
  20. Frahm JP (2008) Diversity, dispersal and biogeography of bryophytes (mosses). Biodivers Conserv 17:277–284. doi: 10.1007/s10531-007-9251-x CrossRefGoogle Scholar
  21. Friedel A, Oheimb GV, Dengler J, Härdtle W (2006) Species diversity and species composition of epiphytic bryophytes and lichens—a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert 117:172–185. doi: 10.1002/fedr.200511084 CrossRefGoogle Scholar
  22. Fritz Ö, Gustafsson L, Larsson K (2008a) Does forest continuity matter in conservation?—a study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biol Conserv 141:655–668. doi: 10.1016/j.biocon.2007.12.006 CrossRefGoogle Scholar
  23. Fritz Ö, Niklasson M, Churski M (2008b) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106CrossRefGoogle Scholar
  24. Gamborg C, Larsen JB (2003) “Back to nature”—a sustainable future for forestry? For Ecol Manage 179:559–571. doi: 10.1016/S0378-1127(02)00553-4 CrossRefGoogle Scholar
  25. Hahn K, Fanta J (eds) (2001) Contemporary beech forest management in Europe. NAT-MAN Working Report 1Google Scholar
  26. Halme P, Ódor P, Christensen M et al (2013) The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol Conserv 168:24–30. doi: 10.1016/j.biocon.2013.08.034 CrossRefGoogle Scholar
  27. Harmon ME, Franklin JF, Swanson FJ et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  28. Heilmann-Clausen J (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol Res 105:575–596. doi: 10.1017/S0953756201003665 CrossRefGoogle Scholar
  29. Heilmann-Clausen J, Aude E, van Dort K et al (2014) Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe—reflecting substrate quality or shaped by climate and forest conditions? J Biogeogr. doi: 10.1111/jbi.12388 Google Scholar
  30. Hofmeister J, Hošek J, Brabec M et al (2015a) Value of old forest attributes related to cryptogam species richness in temperate forests: a quantitative assessment. Ecol Indic 57:497–504. doi: 10.1016/j.ecolind.2015.05.015 CrossRefGoogle Scholar
  31. Hofmeister J, Hošek J, Holá E, Novozámská E (2015b) Decline in bryophyte diversity in predominant types of central European managed forests. Biodivers Conserv 24:1391–1402. doi: 10.1007/s10531-015-0863-2 CrossRefGoogle Scholar
  32. Hokkanen PJ, Kouki J, Komonen A (2009) Nestedness, SLOSS and conservation networks of boreal herb-rich forests. Appl Veg Sci 12:295–303. doi: 10.1111/j.1654-109X.2009.01031.x CrossRefGoogle Scholar
  33. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  34. Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fenn 39:289–309CrossRefGoogle Scholar
  35. Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. doi: 10.1016/j.quascirev.2009.09.028 CrossRefGoogle Scholar
  36. Király I, Nascimbene J, Tinya F, Ódor P (2013) Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers Conserv 22:209–223. doi: 10.1007/s10531-012-0415-y CrossRefGoogle Scholar
  37. Kolb A, Diekmann M (2004) Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J Veg Sci 15:199–208. doi: 10.1111/j.1654-1103.2004.tb02255.x CrossRefGoogle Scholar
  38. Král K, McMahon SM, Janík D et al (2014a) Patch mosaic of developmental stages in central European natural forests along vegetation gradient. For Ecol Manag 330:17–28. doi: 10.1016/j.foreco.2014.06.034 CrossRefGoogle Scholar
  39. Král K, Valtera M, Janík D et al (2014b) Spatial variability of general stand characteristics in central European beech-dominated natural stands—effects of scale. For Ecol Manag 328:353–364. doi: 10.1016/j.foreco.2014.05.046 CrossRefGoogle Scholar
  40. Kučera J, Váňa J, Hradílek Z (2012) Bryophyte flora of the Czech Republic: updated checklist and red list and a brief analysis. Preslia 84:813–850Google Scholar
  41. Laaka-Lindberg S, Korpelainen H, Pohjamo M (2006) Spatial distribution of epixylic hepatics in relation to substrate in a boreal old-growth forest. J Hattori Bot Lab 100:311–323Google Scholar
  42. Larsen JB (1995) Ecological stability of forests and sustainable silviculture. For Ecol Manag 73:85–96. doi: 10.1016/0378-1127(94)03501-M CrossRefGoogle Scholar
  43. Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of Fagus sylvatica: soil nutrient status in 50 Central European beech stands on a board range of bedrock types. Ann For Sci 63:355–368CrossRefGoogle Scholar
  44. Lindenmayer DB, Franklin JF, Lõhmus A et al (2012) A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv Lett 5:421–431. doi: 10.1111/j.1755-263X.2012.00257.x CrossRefGoogle Scholar
  45. Löbel S, Snäll T, Rydin H (2006) Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. J Ecol 94:856–868. doi: 10.1111/j.1365-2745.2006.01114.x CrossRefGoogle Scholar
  46. Madžule L, Brūmelis G, Tjarve D (2011) Structures determining bryophyte species richness in a managed forest landscape in boreo-nemoral Europe. Biodivers Conserv 21:437–450. doi: 10.1007/s10531-011-0192-z CrossRefGoogle Scholar
  47. Mežaka A, Brūmelis G, Piterāns A (2012) Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. Biodivers Conserv 21:3221–3241. doi: 10.1007/s10531-012-0361-8 CrossRefGoogle Scholar
  48. Moning C, Müller J (2009) Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol Indic 9:922–932. doi: 10.1016/j.ecolind.2008.11.002 CrossRefGoogle Scholar
  49. Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:169 (in Swedish with German summary) Google Scholar
  50. Nordén B, Appelqvist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodivers Conserv 10:779–791. doi: 10.1023/A:1016675103935 CrossRefGoogle Scholar
  51. Nordén B, Dahlberg A, Brandrud TE et al (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45. doi: 10.2980/21-1-3667 CrossRefGoogle Scholar
  52. Ódor P, Standovár T (2001) Richness of bryophyte vegetation in near-natural and managed beech stands: the effects of management-induced differences in dead wood. Ecol Bull 49:219–229Google Scholar
  53. Ódor P, van Hees AFM (2004) Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J Bryol 26:79–95CrossRefGoogle Scholar
  54. Ódor P, Heilmann-Clausen J, Christensen M et al (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71CrossRefGoogle Scholar
  55. Ódor P, Király I, Tinya F et al (2013) Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. For Ecol Manag 306:256–265. doi: 10.1016/j.foreco.2013.07.001 CrossRefGoogle Scholar
  56. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: community ecology package. R package version 2.4-1. Accessed 28 Nov 2016
  57. Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linn Soc 28:65–82. doi: 10.1111/j.1095-8312.1986.tb01749.x CrossRefGoogle Scholar
  58. Peters R (1997) Beech forests. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  59. Pharo EJ, Zartman CE (2007) Bryophytes in a changing landscape: the hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biol Conserv 135:315–325. doi: 10.1016/j.biocon.2006.10.016 CrossRefGoogle Scholar
  60. Pícha J (2010) Historický vývoj dřevinné skladby Žofínského pralesa. Bachelor’s thesis, Mendel University in Brno (in Czech)Google Scholar
  61. Pícha J (2012) Expanze buku v NPR Žofínský prales. Master’s thesis. Mendel University in Brno (in Czech)Google Scholar
  62. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data. Oikos 120:1625–1638. doi: 10.1111/j.1600-0706.2011.19451.x CrossRefGoogle Scholar
  63. Průša E (1985) Státní přírodní rezervace Kohoutov, její ekologie a struktura. Lesnictví 31:989–1016 (in Czech) Google Scholar
  64. Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Glob Ecol Biogeogr 18:327–332. doi: 10.1111/j.1466-8238.2009.00450.x CrossRefGoogle Scholar
  65. Qian H, Klinka K, Kayahara G (1998) Longitudinal patterns of plant diversity in the North American boreal forest. Plant Ecol 138:161–178. doi: 10.1023/A:1009756318848 CrossRefGoogle Scholar
  66. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 28 Nov 2016
  67. Rambo TR, Muir PS (1998) Bryophyte species associations with coarse woody debris and stand ages in Oregon. Bryologist 101:366–376CrossRefGoogle Scholar
  68. Samuelsson J, Gustafsson L, Ingelog T (1994) Dying and dead trees: a review of their importance for biodiversity. Swedish Threatened Species Unit, UppsalaGoogle Scholar
  69. Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. For Ecol Manag 174:365–381. doi: 10.1016/S0378-1127(02)00061-0 CrossRefGoogle Scholar
  70. Snäll T, Hagström A, Rudolphi J, Rydin H (2004) Distribution pattern of the epiphyte Neckera pennata on three spatial scales—importance of past landscape structure, connectivity and local conditions. Ecography (Cop) 27:757–766. doi: 10.1111/j.0906-7590.2004.04026.x CrossRefGoogle Scholar
  71. Standovár T, Kenderes K (2003) A review on natural stand dynamics in beechwoods of East Central Europe. Appl Ecol Environ Res 1:19–46CrossRefGoogle Scholar
  72. Táborská M, Přívětivý T, Vrška T, Ódor P (2015) Bryophytes associated with two tree species and different stages of decay in a natural fir-beech mixed forest in the Czech Republic. Preslia 87:387–401Google Scholar
  73. Ujházyová M, Ujházy K, Chytrý M et al (2016) Diversity of beech forest vegetation in the Eastern Alps, Bohemian Massif and the Western Carpathians. Preslia 88:435–457Google Scholar
  74. Vrška T (1998) Prales Salajka po 20 letech (1974-1994). Lesnictví 44:153–181 (in Czech) Google Scholar
  75. Vrška T, Hort L, Odehnalová P, Adam D, Horal D (2000) Prales Mionší—historický vývoj a současný stav. J For Sci 46:411–424 (in Czech with English abstract) Google Scholar
  76. Vrška T, Hort L, Adam D, Odehnalová P, Horal D (2002) Dynamika vývoje pralesovitých rezervací v ČR I – Českomoravská vrchovina (Polom, Žákova hora)/developmental dynamics of virgin forest reserves in the Czech Republic I—the Českomoravská vrchovina Upland (Polom, Žákova hora Mt.). Academia, Praha (in Czech and English)Google Scholar
  77. Vrška T, Šamonil P, Unar P, Hort L, Adam D, Král K, Janík D (2012) Dynamika vývoje pralesovitých rezervací v ČR III—Šumava a Český les (Diana, Stožec, Boubínský prales, Milešický prales)/developmental dynamics of virgin forest reserves in the Czech Republic III—Šumava Mts. and Český les Mts. (Diana, Stožec, Boubín virgin forest, Milešice virgin forest). Academia, Praha (in Czech and English)Google Scholar
  78. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  79. Zerbe S (2002) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For Ecol Manag 167:27–42. doi: 10.1016/S0378-1127(01)00686-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Forest EcologySilva Tarouca Research InstituteBrnoCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Large-Scale Vegetation Ecology Research GroupMTA Centre for Ecological ResearchTihanyHungary
  4. 4.Forest Ecological Research GroupMTA Centre for Ecological ResearchTihanyHungary

Personalised recommendations