Skip to main content

Advertisement

Log in

Impacts of future climate scenarios on hypersaline habitats and their conservation interest

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This study is focused on determining the response behaviour of five saline plant communities to two environmental variables: flooding and salinity. Also, total soil organic carbon, diversity, plant cover and vegetation height were measured. Once this behaviour is known, the impacts of future climate scenarios may be approached. Since some of these variables could be altered by climate change, the future vegetation dynamics might indicate the trending of change, so plant communities can be used as bioindicators. The investigation was carried out in some small coastal wetlands located in a semiarid Mediterranean region. Low values of diversity were found in these plant communities due to a great effect of flooding, followed by salinity. ‘Reed beds’ are bioindicators of flooding and environmental disturbance. ‘Saline rushes’ are also flooding bioindicators and efficient accumulators of organic matter. ‘Mediterranean halophilous scrubs’ are bioindicators of seasonal flooding and changes to salinity. ‘Mediterranean halo-nitrophilous scrubs’ might be considered as bioindicators of low flooding and low salinity in anthropic environment while ‘Mediterranean salt steppes’ bioindicate driest conditions. At present, Mediterranean halophilous scrubs are the most widely extended community, which could be interpreted as a consequence of a changing and sharply seasonal climate. Our research suggests that future climate change scenarios involving flooding increases would support the proliferation of the lowest diversity and thus lower ecological value plant communities (i.e. reed beds). Conversely, a future scenario of decreasing flooding would benefit the most diverse and valuable conservation community actually priortized by European Habitats Directive (Mediterranean salt steppes, Limonietalia).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez-Rogel J, Alcaraz F, Ortiz R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20:357–372

    Article  Google Scholar 

  • Álvarez-Rogel J, Martínez-Sánchez J, Carrasco L, Marín C (2006) A conceptual model of salt marsh plant distribution in coastal dunes of Southeastern Spain. Wetlands 26(3):703–717

    Article  Google Scholar 

  • Álvarez-Rogel J, Jiménez FJ, Roca MJ, Ortiz R (2007) Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci 73:510–526

    Article  Google Scholar 

  • Bai J, Ouyang H, Deng W, Zhu Y, Zhang X, Wang Q (2005) Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma 124:181–192

    Article  CAS  Google Scholar 

  • Bernal B, Mitsch WJ (2008) A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol Eng 34:311–323

    Article  Google Scholar 

  • Berry PM, Dawson TP, Harrison PA, Pearson RG (2002) Impacts on native woodland dynamics and distribution. In: Broadmeadow MSJ (ed) Climate change and UK forests. Forestry Commission Bulletin no 124. Forestry Commission, Edinburgh, pp 169–180

  • Brix H, Sorrel BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat Bot 69:313–324

    Article  CAS  Google Scholar 

  • Brooks R, McKenney-Easterling M, Brinson M et al (2009) A Stream–Wetland–Riparian (SWR) index for assessing condition of aquatic ecosystems in small watersheds along the Atlantic slope of the eastern U.S. Environ Monit Assess 150:101–117

    Article  CAS  PubMed  Google Scholar 

  • Bush MB (2002) Distributional change and conservation on the Andean flank: a palaeoecological perspective. Glob Ecol Biogeogr 11(6):463–473. doi:10.1046/j.1466-822X.2002.00305.x

    Article  Google Scholar 

  • Carlisle BK, Hicks AL, Smith JP, García SR, Largay BG (1999) Plants and aquatic invertebrates as indicators of wetland biological integrity in Waquoit Bay watershed, Cape Code. Environ Cape Cod 2:30–60

    Google Scholar 

  • Carreño MF, Esteve MA, Martínez J, Palazón JA, Pardo MT (2008) Habitat changes in coastal wetlands associated to hydrological changes in the watershed. Estuar Coast Shelf Sci 77:475–483

    Article  Google Scholar 

  • Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater hábitat. Hydrobiologia 597:1–6

    Article  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273

    Article  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • Collingham YC, Huntley B (2000) Impacts of habitat fragmentation and patch size upon migration rates. Ecol Appl 10:131–144

    Article  Google Scholar 

  • Cott GM, Chapman DV, Jansen MAK (2013) Salt marshes on substrate enriched in organic matter: the case of ombrogenic Atlantic salt marshes. Estuaries Coasts 36(3):595–609. doi:10.1007/s12237-012-9579-7

    Article  CAS  Google Scholar 

  • Crooks S (2004) The effect of sea-level rise on coastal geomorphology. Ibis 146(S1):18–20. doi:10.1111/j.1474-919X.2004.00323.x

    Article  Google Scholar 

  • De Leeuw J, De Munck W, Olff H, Bakker JP (1993) Does zonation reflect the succession of salt-marsh vegetation? A comparison of an estuarine and a coastal island marsh in The Netherlands. Acta Bot Neerl 42:435–445

    Article  Google Scholar 

  • Del Barrio G, Harrison PA, Berry PM, Butt N, Sanjuan ME, Pearson RG, Dawson T (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: comparison and implications for policy. Environ Sci Policy 9:129–147

    Article  Google Scholar 

  • Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • EEC (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206, 22/07/1992, 7-50 and its amending acts

  • El-Nahry AH, Doluschitz R (2010) Climate change and its impacts on the coastal zone of the Nile Delta, Egypt. Environ Earth Sci 59:1497–1506

    Article  Google Scholar 

  • Figueroa ME, Castillo JM, Redondo Gómez S et al (2003) Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. J Ecol 91:616–626

    Article  Google Scholar 

  • FitzGerald DM, Fenster M, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37(7):604–612

    Article  Google Scholar 

  • Fordham DA, Akçakaya HR, Araújo MB et al (2012) Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Change Biol 18(4):1357–1371

    Article  Google Scholar 

  • Fuente V, Rufo L, Rodríguez N, Sánchez-Mata D, Franco A, Amils R (2015) A study of Sarcocornia A.J. Scott (Chenopodiaceae) from Western Mediterranean Europe. Plant Biosys 150(2):343–356

  • Futter MN, Helliwell RC, Hutchins M, Aherne J (2009) Modelling the effects of changing climate and nitrogen deposition on nitrate dynamics in a Scottish mountain catchment. Hydrol Res 40(2–3):153–166

    Article  CAS  Google Scholar 

  • García LV, Marañón T, Moreno A, Clemente L (1993) Above-ground biomass and species richness in a Mediterranean salt marsh. J Veg Sci 4(3):417–424

    Article  Google Scholar 

  • Giménez E, Navarro J, Oña JA, Gómez Mercado F (2003) Paraje Natural Punta Entinas-Sabinar (Almería). Flora, vegetación y ornitofauna. Serv Publ Univ de Almería, pp 181

  • Giorgy F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Article  Google Scholar 

  • Gómez Mercado F, Giménez E (2003) Different biodiversity components of a nature reserve in southern Spain. Bot Helv 113(1):37–47

    Google Scholar 

  • Gómez Mercado F, Giménez E, Oña JA (2001) Evolución del paisaje vegetal del Paraje Natural Punta Entinas-Sabinar durante los últimos 40 años. In Gómez Mercado F, Mota JF (eds) Vegetación y cambios climáticos. Serv Publ Univ de Almería, pp 221–239

  • Gómez Mercado F, del Moral F, Giménez E, de Haro S (2012) Salinity tolerance of the hygrophilous plant species in the wetlands of the south of the Iberian Peninsula. Not Bot Horti Agrobot Cluj-Na 40(1):18–28

    Google Scholar 

  • Gómez Mercado F, del Moral F, Giménez E, López E, Delgado IC, de Haro S (2014) Soil requirements of four salt tolerant species in two saline habitats. Arid Land Res Manag 28(4):395–409

    Article  Google Scholar 

  • Gough L, Grace JB (1998) Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia 117:527–535

    Article  PubMed  Google Scholar 

  • Grillas P, van Wijck C, Bonis A (1993) The effect of salinity on the dominance-diversity relations of experimental coastal macrophyte communities. J Veg Sci 4:453–460

    Article  Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11(6):485–495

    Article  Google Scholar 

  • Harrison PA, Berry PM, Butt N, New M (2006) Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environ Sci Policy 9(2):116–128

    Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  • Iglesias A, Mougou R, Moneo M, Quiroga S (2011) Towards adaptation of agriculture to climate change in the Mediterranean. Reg Environ Chang 11:159–166

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

  • Junta de Andalucía (2014) Estaciones agroclimáticas. Consejería de Agricultura, Pesca y Desarrollo Rural. http://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController?action=Static&url=fechas.jsp&c_provincia=4&c_estacion=1. Accessed 27 Mar 2014

  • Kent M, Coker P (1996) Vegetation description and analysis: a practical approach. Wiley, New York, p 363

    Google Scholar 

  • Lal R (2012) Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric Res 1(3):199–212

    Article  Google Scholar 

  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185

    Article  Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

  • Lioubimtseva E, Adams JM (2004) Possible implications of increased carbon dioxide levels and climate change for desert ecosystems. Environ Manag 33(S1):388–404

    Article  Google Scholar 

  • Lissner J, Schierup H (1997) Effects of salinity on the growth of Phragmites australis. Aquat Bot 55:247–260

    Article  CAS  Google Scholar 

  • Magurran AM (2004) Measuring biological diversity. Blackwell Science Ltd, Oxford

    Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. PNAS 99(9):6070–6074. In: Proceeding of the National Academy of Sciences of the United States of America

  • Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol Conserv 112(1–2):87–97

    Article  Google Scholar 

  • Molina JA (1996) Sobre la vegetación de los humedales de la Península Ibérica I: Phragmiti-Magnocaricetea. Lazaroa 16:27–88

    Google Scholar 

  • Mota JF, Garrido JA, Cañadas EV (2009) 1430 Matorrales halonitrófilos (Pegano-Salsoletea). In: VV AA, Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

  • Nearing MA, Pruski FF, O’Neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In Sparks DL, Page AL, Helmke PA et al (eds) Methods of soils analysis part 3 B Chemical methods. SSSA Book Series no 5. Madison (Wisconsin)

  • Olesen JE, Carter TR, Díaz-Ambrona CH et al (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim Change 81:123–143

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Philos Trans R Soc Lond B Biol Sci 345:75–79

    Article  CAS  PubMed  Google Scholar 

  • Pennings SC, Grant MB, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93:159–167

    Article  Google Scholar 

  • Porter JL, Kingsford RT, Brock MA (2007) Seed banks in arid wetlands with contrasting flooding, salinity and turbidity regimes. Plant Ecol 188:215–234. doi:10.1007/s11258-006-9158-8

    Article  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  PubMed  Google Scholar 

  • Raulings EJ, Morris K, Roache MC et al (2010) The importance of water regimes operating at small spatial scales for the diversity and structure of wetland vegetation. Freshw Biol 55(3):701–715

    Article  Google Scholar 

  • REDIAM (Red de Información Ambiental de Andalucía) (2014) El clima de Andalucía en el siglo XXI. Escenarios locales de cambio climático de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía. http://www.juntadeandalucia.es/medioambiente/portal_web/rediam/documentos/docs/clima/clima_andalucia_siglo_XXI_ELCC_IPCC4.pdf

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA et al (eds) Methods of soils analysis part 3 B chemical methods. SSSA Book Series no 5. Madison (Wisconsin)

  • Rivas Martínez S, Loidi J (1999) Bioclimatology of the Iberian Peninsula. In: Rivas Martínez S et al (eds) Iter Ibericum A.D. MIM. (Excursus geobotanicus per Hispaniam et Lusitaniam, ante XLII Symposium Societatis Internationalis Scientiae Vegetationis Bilbao mense Iulio celebrandum dicti Anni). Itinera Geobot 13:41–47

  • Rivas Martínez S, Fernández-González F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341

    Google Scholar 

  • Rivas Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Lousã M, Penas A (2002) Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobot 15(1–2):1–922

  • Roulet NT (2000) Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20:605–615

    Article  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52(3):401–412

    Article  CAS  Google Scholar 

  • Schile LM, Callaway JC, Parker VT et al (2011) Salinity and inundation influence productivity of the halophytic plant Sarcocornia pacifica. Wetlands 31(6):1165–1174

    Article  Google Scholar 

  • Schwartz MW, Iverson LR, Prasad AM, Matthews SN, O’Connor RJ (2006) Predicting extinctions as a result of climate change. Ecology 87:1611–1615. doi:10.1890/0012-9658(2006)87[1611:PEAARO]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Sharpe PJ, Baldwin AH (2012) Tidal marsh plant community response to sea-level rise: a mesocosm study. Aquat Bot 101:34–40

    Article  Google Scholar 

  • Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62:119–130

    Article  CAS  Google Scholar 

  • Sumner GN, Romero R, Homar V, Ramis C, Alonso S, Zorita E (2003) An estimate of the effects of climate change on the rainfall of Mediterranean Spain by the late twenty first century. Clim Dyn 20:789–805

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405:208–211

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli V, Adamo M, Veronico G, Sciandrello S, Tarantino C, Dimopoulos P, Medagli P, Nagendra H, Blonda P (2016) Definition and application of expert knowledge on vegetation pattern, phenology and seasonality for habitat mapping, as exemplified in a Mediterranean coastal site. Plant Biosystems. doi:10.1080/11263504.2016.1231143

    Google Scholar 

  • Watson EB, Byrne R (2009) Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecol 205:113–128

    Article  Google Scholar 

  • Watt SCL, García-Berthou E, Vilar L (2007) The influence of water level and salinity on plant assemblages of a seasonally flooded Mediterranean wetland. Plant Ecol 189:71–85. doi:10.1007/s11258-006-9167-7

    Article  Google Scholar 

  • Whitehead PG, Wade AJ, Butterfield D (2009) Potential impacts of climate change on water quality and ecology in six UK rivers. Hydrol Res 40(2–3):113–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is part of the report of the investigation project ‘Estudio de los factores ambientales que controlan la distribución de las comunidades y especies vegetales en los humedales costeros mediterráneos del sureste peninsular’ P06-RNM-02286 (Call for Projects of Excellence 2006 of the Junta de Andalucía).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gómez Mercado.

Additional information

Communicated by: Daniel Sanchez Mata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez Mercado, F., de Haro Lozano, S. & López-Carrique, E. Impacts of future climate scenarios on hypersaline habitats and their conservation interest. Biodivers Conserv 26, 2717–2734 (2017). https://doi.org/10.1007/s10531-017-1382-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1382-0

Keywords

Navigation