Skip to main content

Advertisement

Log in

Conservation genetic assessment of four plant species in a small replica of a steppe ecosystem >30 years after establishment

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

To counter species loss living ex situ collections in botanic gardens became important elements of robust conservation programs. Several limitations, problems, and risks associated with living ex situ collections have been reported such as appropriate cultivation management to maintain genetic diversity and stochastic effects in small isolated populations in artificial habitats. However, not all small and isolated populations exhibit these predicted genetic changes. In a multi-species in situ/ex situ comparison of sand dune steppe- and grassland vegetation >30 years after the ex situ population establishment, we compared four different species’ population genetic diversities (Alyssum montanum ssp. gmelinii, Gypsophila fastigiata, Helianthemum nummularium ssp. obscurum, Onosma arenaria) by means of ISSR. We observed different species-specific genetic responses to quite similar abiotic selective forces concerning different neutral genetic diversities of wild versus botanic garden populations. The genetic divergence was kept relatively low in two of the four investigated species between the model steppe plant community within the botanic garden where human interference was kept at a minimum and the wild population. However, the moderate genetic divergence of the two other species kept under the same conditions highlights the importance of species-specific intrinsic responses and stochastic effects to ecosystem changes and provides data on population genetic dynamics in small and isolated populations. This contributes to further improve recommendations on how to best conserve endangered plant species in ex situ environments (cultivation in near nature-like replicas of the original site with as little human inference as possible over only certain periods of time, >30 years).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188. doi:10.1111/j.1365-294X.2008.03971.x

    Article  PubMed  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA, Fay JC (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. doi:10.1371/journal.pone.0003376

    Article  PubMed  PubMed Central  Google Scholar 

  • Basey AC, Fant JB, Kramer AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants Journal 16:37–53. doi:10.3368/npj.16.1.37

    Article  Google Scholar 

  • BNatSchG (2009) Bundesnaturschutzgesetz (Gesetz über Naturschutz und Landschaftspflege) Artikel 1 des Gesetzes vom 29.07.2009 (BGBl. I S. 2542), in Kraft getreten am 01.03.2010 zuletzt geändert durch Gesetz vom 13.10.2016 (BGBl. I S. 2258) m.W.v. 01.01.2017

  • Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23:481–506

    Article  Google Scholar 

  • Brouwer W, Stählin A (1955) Handbuch der Samenkunde. DLG-Verlag, Frankfurt am Main

    Google Scholar 

  • Brütting C, Hensen I, Wesche K (2013) Ex situ cultivation affects genetic structure and diversity in arable plants. Plant Biol 15:505–513. doi:10.1111/j.1438-8677.2012.00655.x

    Article  PubMed  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854. http://www.genetics.org/content/genetics/156/2/847.full.pdf

  • Cibrian-Jaramillo A, Hird A, Oleas N, Ma H, Meerow AW, Francisco-Ortega J, Griffith MP (2013) What is the conservation value of a plant in a botanic garden?: using indicators to improve management of ex situ collections. Bot Rev 79:559–577. doi:10.1007/s12229-013-9120-0

    Article  Google Scholar 

  • Cieślak E, Kaźmierczakowa R, Ronikier M (2010) Cochlearia polonica Fröhl. (Brassicaceae), a narrow endemic species of southern Poland: History of conservation efforts, overview of current population resources and genetic structure of populations. Acta Soc Bot Pol 79:255–261. https://pbsociety.org.pl/journals/index.php/asbp/article/download/asbp.2010.033/179

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843. doi:10.1111/j.1365-294X.2006.02994.x

    Article  PubMed  Google Scholar 

  • Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crane PR, Hopper SD, Raven PH, Stevenson DW (2009) Plant science research in botanic gardens. Trends Plant Sci 14:575–577. doi:10.1016/j.tplants.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  • Cruzan MB (2001) Population size and fragmentation tresholds for the maintenance of genetic diversity in the herbaceous endemic Scutellaria montana (Lamiaceae). Evol 55:1569

    Article  CAS  Google Scholar 

  • Darimont CT, Carlson SM, Kinnison MT, Paquet PC, Reimchen TE, Wilmers CC (2009) Human predators outpace other agents of trait change in the wild. Proc Natl Acad Sci USA 106:952–954. doi:10.1073/pnas.0809235106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Blaxter ML (2011) RADSeq: next-generation population genetics. Brief Funct Genom 10:108. doi:10.1093/bfgp/elr007

    Article  Google Scholar 

  • Dogan B, Duran A, Bagci Y, Dinc M, Martin E, Cetin O, Ozturk M (2010) Phylogenetic relationships among the taxa of the genus Johrenia DC. (Apiaceae) from Turkey based on molecular method. Bangladesh J Plant Taxon. doi:10.3329/bjpt.v17i2.6693

    Google Scholar 

  • Dosmann MS (2006) Research in the garden: averting the collections crisis. Bot Rev 72:207–234

    Article  Google Scholar 

  • Duminil J, Hardy OJ, Petit RJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evol Biol 9:177. doi:10.1186/1471-2148-9-177

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242. doi:10.1146/annurev.es.24.110193.001245

    Article  Google Scholar 

  • ENSCONET (2009) Seed collecting manual for wild species

  • Enßlin A, Sandner TM, Matthies D (2011) Consequences of ex situ cultivation of plants: genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens. Biol Cons 144:272–278. doi:10.1016/j.biocon.2010.09.001

    Article  Google Scholar 

  • Ensslin A, Tschöpe O, Burkart M, Joshi J (2015) Fitness decline and adaptation to novel environments in ex situ plant collections: current knowledge and future perspectives. Biol Conserv 192:394–401. doi:10.1016/j.biocon.2015.10.012

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333. doi:10.1111/j.1365-294X.2007.03399.x

    Article  PubMed  Google Scholar 

  • Gavrilets S (2003) Perspective: models of speciation: what have we learned in 40 years? Evol 57:2197–2215. doi:10.1111/j.0014-3820.2003.tb00233.x

    Article  Google Scholar 

  • Glowka L, Burhenne-Guilmin F, Synge H (1994) A guide to the convention on biological diversity. IUCN–the World Conservation Union, Gland, Switzerland

  • Griffith P, Husby C (2010) The price of conservation: measuring the mission and its cost. BGJournal 7:12–14

    Google Scholar 

  • Grover A, Sharma PC (2016) Development and use of molecular markers: past and present. Crit Rev Biotechnol 36:290–302. doi:10.3109/07388551.2014.959891

    Article  CAS  PubMed  Google Scholar 

  • Guerrant EO, Havens K, Maunder M (eds) (2004) Ex situ plant conservation: Supporting species survival in the wild. Island Press, Washington

    Google Scholar 

  • Haeupler H, Muer T (2000) Bildatlas der Farn- und Blütenpflanzen Deutschlands. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Havens K, Guerrant EO, Maunder M, Vitt P (2004) Guidelines for ex situ conservation collection management: minimizing risks. In: Guerrant EO, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 454–473

    Google Scholar 

  • Hecker U (1987) Die Farn- und Blütenpflanzen des Mainzer Sandes. Mainzer Naturw Arch 25:85–133

    Google Scholar 

  • Hegi G (2009) Illustrierte flora von Mitteleuropa. Weissdorn-Verlag, Jena

    Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29. doi:10.1111/j.1365-294X.2007.03428.x

    Article  PubMed  Google Scholar 

  • Hodvina S, Cezanne R (2007) Das Dünen-Steinkraut (Alyssum montanum subsp. gmelinii) in Hessen. Botanik und Naturschutz in Hessen 20:25–51

    Google Scholar 

  • Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11(Suppl 1):117–122. doi:10.1111/j.1755-0998.2010.02967.x

    Article  PubMed  Google Scholar 

  • Honjo M, Ueno S, Tsumura Y, Handa T, Washitani I, Ohsawa R (2008) Tracing the origins of stocks of the endangered species Primula sieboldii using nuclear microsatellites and chloroplast DNA. Conserv Genet 9:1139–1147. doi:10.1007/s10592-007-9427-7

    Article  CAS  Google Scholar 

  • Jännicke W (1892) Die Sandflora von Mainz, ein Relict aus der Steppenzeit. Gbr. Knauer, Frankfurt am Main

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics (Oxford, England) 24:1403–1405. doi: 10.1093/bioinformatics/btn129

  • Jorgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, Ernande B, Gardmark A, Johnston F, Matsumura S, Pardoe H, Raab K, Silva A, Vainikka A, Dieckmann U, Heino M, Rijnsdorp AD (2007) Ecology: managing evolving fish stocks. Science (New York, N.Y.) 318:1247–1248. doi:10.1126/science.1148089

    Article  CAS  Google Scholar 

  • Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632. doi:10.1038/hdy.2010.95

    Article  CAS  PubMed  Google Scholar 

  • Kasso M, Balakrishnan M (2013) Ex situ conservation of biodiversity with particular emphasis to ethiopia. ISRN Biodiversity 2013:1–11. doi:10.1155/2013/985037

    Google Scholar 

  • Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112(113):145–164. doi:10.1023/A:1013375419520

    Article  PubMed  Google Scholar 

  • Knuth P (1898) Handbuch der Blütenbiologie, Leipzig

  • Köhlein F (1984) Primeln und die verwandten Gattungen Mannsschild, Heilglöckchen, Götterblume, Troddelblume. Goldprimel, Ulmer, Stuttgart

    Google Scholar 

  • Korneck D (1974) Xerothermvegetation in Rheinland-Pfalz und Nachbargebieten. Schriftenreihe Vegetationskunde 7

  • Kubitzki K (ed) (2003) Malvales, Capparales and non-betalain Caryophyllales. Springer, Berlin [u.a.]

  • Kühn I, Klotz S (2002) Systematik, Taxonomie und Nomenklatur. In: Klotz S, Kühn I, Durka W (eds) BIOLFLOR: Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Lauterbach D, Ristow M, Gemeinholzer B (2011) Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae). Plant Biol (Stuttg) 13:667–777. doi:10.1111/j.1438-8677.2010.00418.x

    Article  CAS  Google Scholar 

  • Lauterbach D, Burkart M, Gemeinholzer B (2012) Rapid genetic differentiation between ex situ and their in situ source populations: an example of the endangered Silene otites (Caryophyllaceae). Bot J Linn Soc 168:64–75. doi:10.1111/j.1095-8339.2011.01185.x

    Article  Google Scholar 

  • Leimu R, Mutikainen PI, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952. doi:10.1111/j.1365-2745.2006.01150.x

    Article  Google Scholar 

  • Li D-Z, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621. doi:10.1016/j.tplants.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  • Lienert J (2004) Habitat fragmentation effects on fitness of plant populations—a review. J Nat Conserv 12:53–72. doi:10.1016/j.jnc.2003.07.002

    Article  Google Scholar 

  • Lönn M, Prentice HC, Bengtsson K (1996) Genetic structure, allozyme-habitat associations and reproductive fitness in Gypsophila fastigiata (Caryophyllaceae). Oecologia 106:308–316. doi:10.1007/BF00334558

    Article  PubMed  Google Scholar 

  • Lynch M, Milligan B (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Maunder M, Higgens S, Culham A (2001) The effectiveness of botanic garden collections in supporting plant conservation: a European case study. Biodivers Conserv 10:383–401. doi:10.1023/A:1016666526878

    Article  Google Scholar 

  • Maunder M, Hughes C, Hawkins JA, Culham A (2004) Hybridization in ex situ plant collections: conservation concerns, liabilities, and opportunities. In: Guerrant EO, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 325–364

    Google Scholar 

  • Melfi VA (2012) Ex situ gibbon conservation: status, management and birth sex ratios. Int Zoo Yb 46:241–251. doi:10.1111/j.1748-1090.2011.00150.x

    Article  Google Scholar 

  • Miller AJ, Schaal BA (2006) Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol Ecol 15:1467–1480. doi:10.1111/j.1365-294X.2006.02834.x

    Article  CAS  PubMed  Google Scholar 

  • Namoff S, Husby CE, Francisco-Ortega J, Noblick LR, Lewis CE, Griffith MP (2010) How well does a botanical garden collection of a rare palm capture the genetic variation in a wild population? Biol Conserv 143:1110–1117. doi:10.1016/j.biocon.2010.02.004

    Article  Google Scholar 

  • Ng WL, Tan SG (2015) Inter-simple sequence repeat (ISSR) markers: are we doing it right? ASM Sci J 9:30–39

    Google Scholar 

  • Oldfield SF (2009) Botanic gardens and the conservation of tree species. Trends Plant Sci 14:581–583. doi:10.1016/j.tplants.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  • Oldfield S (2010) Botanic gardens: modern-day arks. MIT Press, Cambridge, Mass

    Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248. doi:10.1111/j.1365-2745.2006.01167.x

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Parejo-Farnés C, Albaladejo GR, Arroyo J, Aparicio A (2013) A phylogenetic hypothesis for Helianthemum (Cistaceae) in the Iberian Peninsula. Bot. Complut. 37: 83–92. http://revistas.ucm.es/index.php/BOCM/article/download/42272/40241

  • Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476. doi:10.1046/j.1365-2540.2000.00705.x

    Article  CAS  PubMed  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. doi:10.1186/1746-4811-9-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podolsky RH (2001) Genetic variation for morphological and allozyme variation in relation to population size in Clarkia dudleyana, an endemic annual. Conserv Biol 15:412–423. doi:10.1046/j.1523-1739.2001.015002412.x

    Article  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:1–8. doi:10.1371/journal.pone.0032253

    Article  Google Scholar 

  • Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu MV (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front Genet 4:98. doi:10.3389/fgene.2013.00098

    Article  PubMed  PubMed Central  Google Scholar 

  • Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376. doi:10.1016/S0006-3207(01)00201-4

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly Peter (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provine WB (2004) Perspectives: ernst Mayr: genetics and speciation. Genetics 167:1041–1046

    PubMed  PubMed Central  Google Scholar 

  • Rice KJ, Emery NC (2003) Managing microevolution: restoration in the Face of Global Change. Front Ecol Environ 1:469. doi:10.2307/3868114

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rucińska A, Puchalski J (2011) Comparative molecular studies on the genetic diversity of an ex situ garden collection and its source population of the critically endangered polish endemic plant Cochlearia polonica E. Fröhlich. Biodivers Conserv 20:401–413. doi:10.1007/s10531-010-9965-z

    Article  Google Scholar 

  • Rusterholz H-P, Aydin D, Baur B (2012) Population structure and genetic diversity of relict populations of Alyssum montanum on limestone cliffs in the Northern Swiss Jura mountains. Alp Bot 122:109–117. doi:10.1007/s00035-012-0105-0

    Article  Google Scholar 

  • Schweingruber FH, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Swiss Federal Research Institute WSL

  • Secretariat of the Convention on Biological Diversity (SCBD) (2010) 2010. Global strategy for plant conservation. Updated Strategy 2011–2020. https://www.cbd.int/gspc/about.shtml. Accessed 4 August 2016

  • Španiel S, Marhold K, Filová B, Zozomová-Lihová J (2011) Genetic and morphological variation in the diploid–polyploid Alyssum montanum in Central Europe: taxonomic and evolutionary considerations. Plant Syst Evol 294:1–25. doi:10.1007/s00606-011-0438-y

    Article  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101. doi:10.1016/S0169-5347(02)00044-7

    Article  Google Scholar 

  • Tautz D (1989) Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6463–6471. doi:10.1093/nar/17.16.6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res 12:4127–4138. doi:10.1093/nar/12.10.4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutin TG, Ball PW (1972) Diapensiaceae to myoporaceae. Cambridge University Press, Cambridge

    Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964) Lycopodiaceae to plantanaceae. Cambridge University Press, Cambridge

    Google Scholar 

  • Vekemans X (2002) AFLP-surv version 1.0. Distributed by the author. Laboratoire de Ge´ne´tique et Evolution des Populations Ve´ge´tales. Department of Biology, University of Lille 1, Lille

  • Volis S, Blecher M (2010) Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodivers Conserv 19:2441–2454. doi:10.1007/s10531-010-9849-2

    Article  Google Scholar 

  • Weising K (2005) DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. Taylor & Francis Group, Boca Raton, FL

    Book  Google Scholar 

  • Whitlock R, Hipperson H, Thompson D, Butlin RK, Burke T (2016) Consequences of in situ strategies for the conservation of plant genetic diversity. Biol Conserv 203:134–142. doi:10.1016/j.biocon.2016.08.006

    Article  Google Scholar 

  • Wiens JA, Hobbs RJ (2015) Integrating conservation and restoration in a changing world. Bioscience 65:302–312. doi:10.1093/biosci/biu235

    Article  Google Scholar 

  • Wolf AT, Harrison SP, Hamrick JL (2000) Influence of habitat patchiness on genetic diversity and spatial structure of a serpentine endemic plant. Conserv Biol 14:454–463. doi:10.1046/j.1523-1739.2000.98499.x

    Article  Google Scholar 

  • Xu Q, Wen X, Deng X (2004) A simple protocol for isolating genomic DNA from chestnut rose (Rosa roxburghii Tratt) for RFLP and PCR analyses. Plant Mol Biol Rep 22:301–302. doi:10.1007/BF02773140

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi:10.1016/0169-5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the local nature conservation authorities (Iris Fath and Thomas Schlindwein (Struktur- und Genehmigungsdirektion Süd Rheinland-Pfalz/collection permission 42/553-251) for the collection permissions in the protected area and Hans-Jürgen Dechent for support during field work. We thank Ralf Omlor (Botanic Garden Mainz, Germany) for providing plant material and Andreas Epp, Eva Heinrich, Pierre Kroening, Sabine Mutz, and Helene Krufczik for support in the laboratory and Stephanie Swenson-Friedrich for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Magdalena Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neil Brummitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C.M., Huwe, B., Wissemann, V. et al. Conservation genetic assessment of four plant species in a small replica of a steppe ecosystem >30 years after establishment. Biodivers Conserv 26, 2699–2716 (2017). https://doi.org/10.1007/s10531-017-1381-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1381-1

Keywords

Navigation