Skip to main content

Cerrado vegetation types determine how land use impacts ant biodiversity

Abstract

The simplification of native habitats leads to biodiversity decline in tropical terrestrial ecosystems. We evaluated how conversion of three types of native Cerrado vegetation (open grassland, typical savanna, and woodland savanna) to two human-managed land uses (Eucalyptus plantations and pastures) affects ant richness and composition in arboreal, epigaeic, and hypogaeic ant communities. We also sampled vegetation and soil characteristics to determine which specific features could be driving differences in ant communities with land use conversion. In general, biodiversity was negatively affected by conversion to Eucalyptus plantations and pastures regardless of vegetation type. But these impacts do not act in the same way in each ant strata or vegetation type. Grass and herbaceous cover was the most important environmental variable correlated with diversity in open grassland and plant richness and litter diversity were the most important environmental variables for ant species in typical and woodland savannas. Our results indicate that expanding Eucalyptus plantations may have stronger negative impacts from conversion of open vegetation types while pasture implementation may have stronger negative effects if implemented in closed vegetation types. Thus, we show the need of protection of the diversity of all native vegetation found in the Brazilian Cerrado (from open to forested habitats).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alarcon GG, Ayanu Y, Fantini AC, Farley J, Schmitt AL, Koellner T (2015) Weakening the Brazilian legislation for forest conservation has severe impacts for ecosystem services in the Atlantic Southern Forest. Land Use Policy 47:1–11. doi:10.1016/j.landusepol.2015.03.011

    Article  Google Scholar 

  • Almeida S, Louzada J, Sperber C, Barlow J (2011) Subtle land-use change and tropical biodiversity: dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica 43:704–710. doi:10.1111/j.1744-7429.2011.00751.x

    Article  Google Scholar 

  • AMS—Associação Mineira de Silvicultura (2013) Florestas Plantadas, p. 63. http://silviminas.com.br/

  • Andersen AN, Hoffmann BD, Müller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17. doi:10.1046/j.1365-2664.2002.00704.x

    Article  Google Scholar 

  • Audino LD, Louzada J, Comita L (2014) Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biol Conserv 169:248–257. doi:10.1016/j.biocon.2013.11.023

    Article  Google Scholar 

  • Baccaro FB, Feitosa RM, Fernández F, Fernandes IO, Izzo TJ, Souza JLP, Solar R (2015) Guia para os gêneros de formigas do Brasil. Editora INPA

  • Barlow J, Mestre LAM, Gardner TA, Peres CA (2007) The value of primary, secondary and plantation forests for Amazonian birds. Biol Conserv 136:212–231. doi:10.1016/j.biocon.2006.11.021

    Article  Google Scholar 

  • Beiroz W, Audino L, Queiroz ACM, Rabello AM, Boratto I, Silva Z, Ribas CR (2014) Structure and composition of edaphic arthropod community and its use as bioindicators of environmental disturbance. AEER 12:481–491

    Article  Google Scholar 

  • Bernstein RA (1975) Foraging strategies of ants in response to variable food density. Ecology 56:213–219. doi:10.2307/1935314

    Article  Google Scholar 

  • Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WL Jr, Delabie JHC, Silvestre R (2000) Field techniques for the study of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants. Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 122–144

    Google Scholar 

  • Boulton AM, Davies KF, Ward PS (2005) Species richness, abundance, and composition of ground-dwelling ants in northern California grasslands: role of plants, soil, and grazing. Environ Entomol 34:96–104. doi:10.1603/0046-225X-34.1.96

    Article  Google Scholar 

  • Braga DL, Louzada JN, Zanetti R, Delabie JHC (2010) Rapid evaluation of ant diversity in land use systems in southern Bahia, Brazil. Neotrop Entomol 39:464–469. doi:10.1590/S1519-566X2010000400002

    Article  PubMed  Google Scholar 

  • Brandão CRF, Silva RR, Feitosa RM (2011) Cerrado ground-dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zoologia (Curitiba) 28:379–387. doi:10.1590/S1984-46702011000300012

    Article  Google Scholar 

  • Brannstrom C, Jepson W, Filippi AM, Redo D, Xu Z, Ganesh S (2008) Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy. Land Use Policy 25:579–595. doi:10.1016/j.landusepol.2007.11.008

    Article  Google Scholar 

  • Bridgewater S, Ratter JA, Ribeiro JF (2004) Biogeographic patterns, β-diversity and dominance in the cerrado biome of Brazil. Biodivers Conserv 13:2295–2317. doi:10.1023/B:BIOC.0000047903.37608.4c

    Article  Google Scholar 

  • Campos RB, Schoereder JH, Sperber CF (2007) Small-scale patch dynamics after disturbance in litter ant communities. Basic Appl Ecol 8:36–43. doi:10.1016/j.baae.2006.03.010

    Article  Google Scholar 

  • Christianini AV, Mayhé-Nunes AJ, Oliveira PS (2012) Exploitation of fallen diaspores by ants: are there ant-plant partner choices? Biotropica 44:360–367. doi:10.1111/j.1744-7429.2011.00822.x

    Article  Google Scholar 

  • Costa FV, Neves FS, Silva JO, Fagundes M (2011) Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod Plant Interact 5:9–18. doi:10.1007/s11829-010-9111-6

    Article  Google Scholar 

  • Crawley MJ (2013) The R book. Wiley, Chichester

    Google Scholar 

  • Crist TO, Wiens JA (1996) The distribution of ant colonies in a semiarid landscape: implications for community and ecosystem processes. Oikos 76:301–311. doi:10.2307/3546202

    Article  Google Scholar 

  • Cuissi RG, Lasmar CJ, Moretti TS, Schmidt FA, Fernandes WD, Falleiros AB, Schoereder JH, Ribas CR (2015) Ant community in natural fragments of the Brazilian wetland: species–area relation and isolation. J Insect Conserv 19:531–537. doi:10.1007/s10841-015-9774-5

    Article  Google Scholar 

  • DeAndrade ML, Baroni-Urbani C (1999) Diversity and adaptation in the ant genus Cephalotes, past and present. Stuttg Beitr Naturkd Serie B 271:1–889

    Google Scholar 

  • DeBruyn LL (1999) Ants as bioindicators of soil function in rural environments. Agric Ecosyst Environ 74:425–441. doi:10.1016/S0167-8809(99)00047-X

    Article  Google Scholar 

  • Eldridge KG, Davidson J, Harwood CE, Wyk GV (1993) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  • Espírito-Santo MM, Leite ME, Silva JO, Barbosa RS, Rocha AM, Anaya FC, Dupin MGV (2016) Understanding patterns of land-cover change in the Brazilian Cerrado from 2000 to 2015. Philos Trans R Soc B 371:20150435. doi:10.1098/rstb.2015.0435

    Article  Google Scholar 

  • Fernandes GW, Coelho MS, Machado RB, Ferreira ME, de Souza Aguiar LM, Dirzo R, Scariot A, Lopes CR (2016) Afforestation of savannas: an impending ecological disaster. Nat Conserv. doi:10.1016/j.ncon.2016.08.002

    Article  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap light analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from truecolour fisheye photographs, user manual and program documentation. Simon Fraser University, Burnaby, British Colombia and The Institute of Ecosystem Studies, Millbrook. New York

  • Frizzo TLM, Vasconcelos HL (2013) The potential role of scattered trees for ant conservation in an agriculturally dominated Neotropical landscape. Biotropica 45:644–651. doi:10.1111/btp.12045

    Article  Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob Ecol Biogeogr 8:223–241. doi:10.1046/j.1466-822X.1999.00142.x

    Article  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582. doi:10.1111/j.1461-0248.2009.01294.x

    Article  PubMed  Google Scholar 

  • Gries R, Louzada J, Almeida S, Macedo R, Barlow J (2012) Evaluating the impacts and conservation value of exotic and native tree afforestation in Cerrado grasslands using dung beetles. Insect Conserv Divers 5:175–185. doi:10.1111/j.1752-4598.2011.00145.x

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Ann Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. doi:10.1111/2041-210X.12613

    Article  Google Scholar 

  • Janicki J, Narula N, Ziegler M, Guénard B, Economo EP (2016) Visualizing and interacting with large-volume biodiversity data using client–server web-mapping applications: the design and implementation of antmaps. org. Ecol Inform 32:185–193. doi:10.1016/j.ecoinf.2016.02.006

    Article  Google Scholar 

  • Jerrentrup JS, Wrage-Mönnig N, Röver KU, Isselstein J (2014) Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J Appl Ecol 51:968–977. doi:10.1111/1365-2664.12244

    Article  Google Scholar 

  • Kaspari M (1996) Testing resource-based models of patchiness in four Neotropical litter ant assemblages. Oikos 76:443–454. doi:10.2307/3546338

    Article  Google Scholar 

  • Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a Neotropical forest. Biotropica 32:703–711. doi:10.1646/0006-3606(2000)032[0703:AAAMGI]2.0.CO;2

    Article  Google Scholar 

  • Kissling WD, Dormann CF, Groeneveld J, Hickler T, Kühn I, McInerny GJ, Montoya JM, Römermann R, Schiffers K, Schurr FM, Singer A, Svenning JC, Zimmermann NE, O’Hara RB (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J Biogeogr 39:2163–2178. doi:10.1111/j.1365-2699.2011.02663.x

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. doi:10.1111/j.1523-1739.2005.00702.x

    Article  Google Scholar 

  • Lange D, Del-Claro K (2014) Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations? PLoS ONE 9:e105574. doi:10.1371/journal.pone.0105574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattke JE, Fernández F, Palacio EE (2007) Identification of the species of Gnamptogenys Roger in the Americas. Mem Am Entomol Inst 80:254–270

    Google Scholar 

  • Legendre P, Legendre LF (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Leite GL, Veloso RV, Zanuncio JC, Alonso J, Ferreira PS, Almeida CI, Fernandes GW, Serrão JE (2016) Diversity of Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado. Fla Entomol 99:239–247. doi:10.1653/024.099.0213

    Article  Google Scholar 

  • Loyola R (2014) Brazil cannot risk its environmental leadership. Divers Distrib 20:1365–1367. doi:10.1111/ddi.12252

    Article  Google Scholar 

  • Majer JD (1983) Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. Environ Manage 7:375–383. doi:10.1007/BF01866920

    Article  Google Scholar 

  • Maravalhas J, Vasconcelos HL (2014) Revisiting the pyrodiversity–biodiversity hypothesis: long-term fire regimes and the structure of ant communities in a Neotropical savanna hotspot. J Appl Ecol 51:1661–1668. doi:10.1111/1365-2664.12338

    Article  Google Scholar 

  • Marimon BS, Marimon-Junior BH, Feldpausch TR, Oliveira-Santos C, Mews HA, Lopez-Gonzalez G, Lloydbh J, Franczakf DD, Oliveira EA, Maracahipes L, Miguel A, Lenza E, Phillips OL (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol Divers 7:281–292. doi:10.1080/17550874.2013.818072

    Article  Google Scholar 

  • Marinho CGS, Zanetti R, Delabie JHC, Schlindwein MN, Ramos LS (2002) Diversidade de formigas (Hymenoptera: Formicidae) da serapilheira em eucaliptais (Myrtaceae) e área de cerrado de Minas Gerais. Neotrop Entomol 31:187–195. doi:10.1590/S1519-566X2002000200004

    Article  Google Scholar 

  • Martha-Jr G, Vilela L (2002) Pastagens no Cerrado: baixa produtividade pelo uso limitado de fertilizantes. Embrapa Cerrados

  • Mattison EH, Norris K (2005) Bridging the gaps between agricultural policy, land-use and biodiversity. Trends Ecol Evol 20:610–616. doi:10.1016/j.tree.2005.08.011

    Article  PubMed  Google Scholar 

  • Mayhé-Nunes AJ, Brandão CRF (2002) Revisionary studies on the attine ant genus Trachymyrmex Forel. Part 1: definition of the genus and the opulentus group (Hymenoptera: Formicidae). Sociobiology 40:667–698

    Google Scholar 

  • Mayhé-Nunes AJ, Brandão CRF (2005) Revisionary studies on the attine ant genus Trachymyrmex Forel. Part 2: the Iheringi group (Hymenoptera: Formicidae). Sociobiology 45:271–305

    Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Camb Philos 73:181–201

    Article  Google Scholar 

  • McGill B (2015) Biodiversity: land use matters. Nature 520:38–39. doi:10.1038/520038a

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, DaFonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Neves FS, Queiroz-Dantas KS, DaRocha WD, Delabie JHC (2013) Ants of three adjacent habitats of a transition region between the Cerrado and Caatinga biomes: the effects of heterogeneity and variation in canopy cover. Neotrop Entomol 42:258–268. doi:10.1007/s13744-013-0123-7

    Article  CAS  PubMed  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. doi:10.1038/nature14324

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) The vegan package. Community ecology package, version 2-3-1. http://vegan.r-forge.r-project.org

  • Oliveira PS, Freitas AV (2004) Ant–plant–herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91:557–570. doi:10.1007/s00114-004-0585-x

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PS, Marquis RJ (2002) The cerrados of Brazil: Ecology and natural history of a neotropical savanna. Columbia University Press, New York

    Book  Google Scholar 

  • Oliveira PS, Oliveira-Filho AT (1991) Distribution of extrafloral nectaries in the woody flora of tropical communities in Western Brazil. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 163–175

    Google Scholar 

  • Pacheco R, Vasconcelos HL (2012a) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodivers Conserv 21:797–809. doi:10.1007/s10531-011-0221-y

    Article  Google Scholar 

  • Pacheco R, Vasconcelos HL (2012b) Subterranean pitfall traps: is it worth including them in your ant sampling protocol? Psyche. doi:10.1155/2012/870794

    Article  Google Scholar 

  • Pacheco R, Silva RR, Morini MS, Brandão CR (2009) A comparison of the leaf-litter ant fauna in a secondary atlantic forest with an adjacent pine plantation in southeastern Brazil. Neotrop Entomol 38(1):55–65. doi:10.1590/S1519-566X2009000100005

    Article  Google Scholar 

  • Pacheco R, Vasconcelos HL, Groc S, Camacho GP, Frizzo TLM (2013) The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodivers Conserv 22:983–999. doi:10.1007/s10531-013-0463-y

    Article  Google Scholar 

  • Paolucci LN, Solar RRC, Schoereder JH (2010) Litter and associated ant fauna recovery dynamics after a complete clearance. Sociobiology 55:133–144

    Google Scholar 

  • Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos RO, Soto-Pinto LO, Tejeda-Cruz CE (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22:1093–1105. doi:10.1111/j.1523-1739.2008.01029.x

    Article  PubMed  Google Scholar 

  • Philpott SM, Perfecto I, Armbrecht I, Parr CL (2010) Ant diversity and function in disturbed and changing habitats. In: Lach L, Parr CL, Abott KL (eds) Ant ecology. Oxford University Press, New York, pp 137–157

    Google Scholar 

  • Queiroz ACM, Ribas CR (2016) Canopy cover negatively affects arboreal ant species richness in a tropical open habitat. Braz J Biol. doi:10.1590/1519-6984.02015

    Article  PubMed  Google Scholar 

  • Queiroz ACM, Ribas CR, França FM (2013) Microhabitat characteristics that regulate ant richness patterns: the importance of leaf litter for epigaeic ants. Sociobiology 60:367–373. doi:10.13102/sociobiology.v60i4.367-373

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistica computing. R Foundation for Statistical Computing, Vienna http://www.rproject.org

    Google Scholar 

  • Rabello AM, Queiroz ACM, Lasmar CJ, Cuissi RG, Canedo-Júnior EO, Schmidt FA, Ribas CR (2015) When is the best period to sample ants in tropical areas impacted by mining and in rehabilitation process? Insectes Soc 62:227–236. doi:10.1007/s00040-015-0398-2

    Article  Google Scholar 

  • Rezende JB, Pereira JR, Botelho DO (2013) Expansão da cultura do eucalipto nos municípios mineiros e gestão territorial. Cerne 19:1–7. doi:10.1590/S0104-77602013000100001

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol 28:305–314. doi:10.1046/j.1442-9993.2003.01290.x

    Article  Google Scholar 

  • Ribas CR, Campos RB, Schmidt FA, Solar RR (2012) Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche. doi:10.1155/2012/636749

    Article  Google Scholar 

  • Rivas-Arancibia SP, Carrillo-Ruiz H, Bonilla-Arce A, Figueroa-Castro DM, Andrés-Hernández AR (2014) Effect of disturbance on the ant community in a semiarid region of central México. Appl Ecol Environ Res 12:703–716. doi:10.15666/aeer/1203_703716

    Article  Google Scholar 

  • Rogers LE, Lavigne RJ, Miller JL (1972) Bioenergetics of the western harvest ant in the shortgrass plains ecosystems. Environ Entomol 3:994–997. doi:10.1093/ee/1.6.763

    Article  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Mapeamento do uso do solo e cobertura vegetal-bioma cerrado: ano base 2002. MMA, Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Schmidt FA, Solar RRC (2010) Hypogaeic pitfall traps: methodological advances and remarks to improve the sampling of a hidden ant fauna. Insectes Soc 57:261–266. doi:10.1007/s00040-010-0078-1

    Article  Google Scholar 

  • Schmidt FA, Ribas CR, Schoereder JH (2013) How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecol Indic 24:158–166. doi:10.1016/j.ecolind.2012.05.031

    Article  Google Scholar 

  • Schmidt FA, Schoereder JH, Caetano MD (2016) Ant assemblage and morphological traits differ in response to soil compaction. Insectes Soc. doi:10.1007/s00040-016-0532-9

    Article  Google Scholar 

  • Schoereder JH, Sobrinho TG, Madureira MS, Ribas CR, Oliveira PS (2010) The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna. Terr Arthropod Rev 3:3–27. doi:10.1163/187498310X487785

    Article  Google Scholar 

  • Scolforo JR, Carvalho LMT (2006) Mapeamento e inventário da flora nativa e dos reflorestamentos de Minas Gerais. Universidade Federal de Lavras, Lavras

    Google Scholar 

  • Soares-Filho B, RajãoR MacedoM, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science 344:363–364. doi:10.1126/science.1246663

    Article  CAS  PubMed  Google Scholar 

  • Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VH, Chaul J (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. doi:10.1111/ele.12494

    Article  PubMed  Google Scholar 

  • Sosa-Calvo J, Schultz TR, Brandão CRF, Klingenberg C, Feitosa RM, Rabeling C, Bacci-Jr M, Lopes CT, Vasconcelos HL (2013) Cyatta abscondita: taxonomy, evolution, and natural history of a new fungus-farming ant genus from Brazil. PLoS ONE 8:e80498. doi:10.1371/journal.pone.0080498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparovek G, Berndes G, Barretto AG, Klug IL (2012) The revision of the Brazilian Forest Act: increased deforestation or a historic step towards balancing agricultural development and nature conservation? Environ Sci Policy 16:65–72. doi:10.1016/j.envsci.2011.10.008

    Article  Google Scholar 

  • Turner IM, Corlett TR (1996) The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol Evol 11:330–333. doi:10.1016/0169-5347(96)10046-X

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos HL, Maravalhas JB, Cornelissen T (2016) Effects of fire disturbance on ant abundance and diversity: a global meta-analysis. Biodivers Conserv. doi:10.1007/s10531-016-1234-3

    Article  Google Scholar 

  • Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience. doi:10.1093/biosci/biv118

    Article  Google Scholar 

  • Wilson EO (2003) Pheidole in the new world. A dominant, hyperdiverse ant genus. Harvard University Press, Cambridge

    Google Scholar 

  • Zinn YL, Resck DV, Silva JE (2002) Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. Forest Ecol Manag 166:285–294. doi:10.1016/S0378-1127(01)00682-X

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks to D.J. Botelho, M.J. Costa, P.J. Costa, T. Costa, P.S. Paula, S. Pereira, F. Reis, L.F.B. Simões, and other farmers from Itutinga, Itumirim and Boa Esperança cities. We thank G. Alves, P. Borges, R. Carvalho, R.G. Cuissi, C.J. Lasmar, and M. Imata for helping us with fieldwork. We are thankful to T.S.R. Silva and G. Camacho for their help to confirm the ant identification, to H.L. Vasconcelos for his comments in the previous versions of this project, and L. Zanella and R. Solar for their help with figures and statistical analysis. During the study, A.C.M. Queiroz and A.M. Rabello received scholarships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes (PDSE processes #8794/2014-06 and #4934/2014-08, respectively), and C.R. Ribas received scholarship from Fundação de Amparo a Pesquisa de Minas Gerais—FAPEMIG (CRA PPM-00243/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. M. de Queiroz.

Additional information

Communicated by Jens Wolfgang Dauber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1172 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz, A.C.M., Rabello, A.M., Braga, D.L. et al. Cerrado vegetation types determine how land use impacts ant biodiversity. Biodivers Conserv 29, 2017–2034 (2020). https://doi.org/10.1007/s10531-017-1379-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1379-8

Keywords

  • Brazilian savanna
  • Fragmentation
  • Eucalyptus
  • Pasture
  • Formicidae
  • Habitat simplification