Skip to main content

Advertisement

Log in

Neotropical moth assemblages degrade due to oil palm expansion

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Oil palm is one of the most rapidly expanding crops throughout the tropics, yet little is known about its impacts on Neotropical invertebrate biodiversity. Responses of insect assemblages to land conversion may substantially vary among taxa. We assessed geometrid and arctiine moth assemblages in a Costa Rican human dominated landscape, where oil palm plantations are now the second most common land cover. Moths were sampled during 6 months with automatic traps in the interior and margin of old-growth forests, young secondary forests and oil palm plantations in a 30 km2 area. Our results show that richness and diversity of both taxa were severely reduced in oil palm compared to all other habitats. Geometrid abundance was highest in forest interiors and lowest in oil palm, while arctiine numbers did not differ between habitats. Dominance was highest in oil palm plantations, where one arctiine species and one geometrid species accounted for over 40% of total abundance in each of their respective taxa. Species composition was distinct in oil palm and forest interior sites, and depicted a gradient of habitat disturbance in ordination space that was strongly related to vegetation diversity and structure. This study demonstrates that oil palm plantations are not a suitable habitat for these moth taxa. Whilst some arctiine species seem adapted to disturbed habitats, geometrids were more dependent on old-growth forests, showing higher bioindicator potential. In the face of accelerated oil palm expansion, conservation strategies should focus on protecting old-growth forest remnants, as well as increasing species diversity and structural complexity of degraded habitats.

Resumen

La palma aceitera es uno de los cultivos de mayor crecimiento en la región tropical. Sin embargo, poco se conoce sobre sus impactos en la biodiversidad de invertebrados neotropicales. En este estudio se evaluaron los ensamblajes de mariposas nocturnas Geometridae y Erebidae-Arctiinae en un paisaje rural de Costa Rica, donde las plantaciones de palma aceitera son el segundo uso de suelo más común. Las mariposas fueron recolectadas con trampas automáticas durante seis meses en el interior y margen de bosque maduro, en bosque secundario joven y en plantaciones de palma aceitera. Nuestros resultados muestran que la riqueza y diversidad de geométridos y árctidos fue severamente reducida en plantaciones de palma en comparación con los otros hábitats. La abundancia de geométridos fue mayor en el interior del bosque y menor en plantaciones, mientras que la abundancia de árctidos no mostró diferencias entre hábitats. La dominancia fue mayor en plantaciones, en donde una especie de Arctiinae y una especie de Geometridae representó más del 40% de la abundancia total de cada uno de sus respectivos grupos. La composición de especies fue significativamente distinta en plantaciones de palma y en el interior de bosques, y fue altamente influenciada por la diversidad y estructura de la vegetación. Este estudio demuestra que las plantaciones de palma aceitera tienen un fuerte impacto en estos grupos de Lepidoptera. Ante la expansión acelerada de plantaciones de palma, las estrategias de conservación deben enfocarse en proteger los remanentes de bosques maduros y en aumentar la diversidad y complejidad estructural de hábitats degradados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso-Rodríguez AM (2014) Land use effects on geometrid and arctiine moth assemblages in the tropical lowlands of south-western Costa Rica. Dissertation, Tropical Agricultural Research and Higher Education Center (CATIE). http://repositorio.bibliotecaorton.catie.ac.cr/bitstream/handle/11554/7095/Land_use_effects.pdf?sequence=1

  • Andersen AN, Hoffmann BD, Muller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17. doi:10.1046/j.1365-2664.2002.00704.x

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Aratrakorn S, Thunhikorn S, Donald PF (2006) Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv Int 16:71–82. doi:10.1017/S0959270906000062

    Article  Google Scholar 

  • Axmacher JC, Fiedler K (2004) Manual versus automatic moth sampling at equal light sources—A comparison of catches from Mt. Kilimanjaro. J Lepid Soc 58:196–202

    Google Scholar 

  • Axmacher JC, Fiedler K (2008) Habitat type modifies geometry of elevational diversity gradients in geometrid moths (Lepidoptera Geometridae) on Mt Kilimanjaro, Tanzania. Trop Zool 21:243–251

    Google Scholar 

  • Axmacher JC, Brehm G, Hemp A, Tünte H, Lyaruu HV, Müller-Hohenstein K, Fiedler K (2009) Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): plant diversity, vegetation structure or abiotic factors? J Biogeogr 36:337–349. doi:10.1111/j.1365-2699.2008.01997.x

    Article  Google Scholar 

  • Beck J, Chey VK (2007) Beta-diversity of geometrid moths from northern Borneo: effects of habitat, time and space. J Anim Ecol 76:230–237. doi:10.1111/j.1365-2656.2006.01189.x

    Article  PubMed  Google Scholar 

  • Beck J, Schwanghart W (2010) Comparing measures of species diversity from incomplete inventories: an update. Methods Ecol Evol 1:38–44. doi:10.1111/j.2041-210X.2009.00003.x

    Article  Google Scholar 

  • Beck J, Schulze CH, Linsenmair KE, Fiedler K (2002) From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. J Trop Ecol 18:33–51. doi:10.1017/S026646740200202X

    Article  Google Scholar 

  • Beck J, Brehm G, Fiedler K (2011) Links between the environment, abundance and diversity of Andean Moths. Biotropica 43:208–217. doi:10.1111/j.1744-7429.2010.00689.x

    Article  Google Scholar 

  • Beck J, McCain CM, Axmacher JC, Ashton LA, Bärtschi F, Brehm G, Choi SW, Cizek O, Colwell RK, Fiedler K, Francois CL, Highland S, Holloway JD, Intachat J, Kadlec T, Kitching RL, Maunsell SC, Merckx T, Nakamura A, Odell E, Sang W, Toko PS, Zamecnik J, Zoi Y, Novotny V (2017) Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob Ecol Biogeogr. doi:10.1111/geb.12548

    Google Scholar 

  • Brehm G (2007) Contrasting patterns of vertical stratification in two moth families in a Costa Rican lowland rain forest. Basic Appl Ecol 8:44–54. doi:10.1016/j.baae.2006.02.002

    Article  Google Scholar 

  • Brehm G (2010) Diversity of geometrid moths in two Neotropical rain forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, pp 192–196

  • Brehm G, Axmacher JC (2006) A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ Entomol 35:757–764. doi:10.1603/0046-225X-35.3.757

    Article  Google Scholar 

  • Brehm G, Fiedler K (2004) Ordinating tropical moth ensembles from an elevational gradient: a comparison of common methods. J Trop Ecol 20:165–172. doi:10.1017/S0266467403001184

    Article  Google Scholar 

  • Brehm G, Fiedler K (2005) Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. J Res Lepidoptera 38:1–14

    Google Scholar 

  • Brehm G, Pitkin LM, Hilt N, Fiedler K (2005) Montane Andean rain forests are a global diversity hotspot of geometrid moths. J Biogeogr 32:1621–1627. doi:10.1111/j.1365-2699.2005.01304

    Article  Google Scholar 

  • Brehm G, Hebert PDN, Colwell RK, Adams MO, Bodner F, Friedemann K, Möckel L, Fiedler K (2016) Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLoS ONE 11:e0150327. doi:10.1371/journal.pone.0150327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown KS (1997) Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring. J Insect Conserv 1:25–42. doi:10.1023/A:1018422807610

    Article  Google Scholar 

  • Butler RA, Laurance WF (2009) Is oil palm the next emerging threat to the Amazon? Trop Conserv Sci 2:1–10

    Google Scholar 

  • Carter C, Finley W, Fry J, Jackson D, Willis L (2007) Palm oil markets and future supply. Eur J Lipid Sci Technol 109:307–314. doi:10.1002/ejlt.200600256

    Article  CAS  Google Scholar 

  • Castiblanco C, Etter A, Aide TM (2013) Oil palm plantations in Colombia: a model of future expansion. Environ Sci Policy 27:172–183. doi:10.1016/j.envsci.2013.01.003

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. doi:10.1890/11-1952.1

    Article  PubMed  Google Scholar 

  • Chao A, Shen TJ (2010) Program SPADE (species prediction and diversity estimation). Program and User’s Guide. http://chao.stat.nthu.edu.tw

  • Chazdon RL (2014) Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D, Stork NE, Miller S (2009) The potential for species conservation in tropical secondary forests. Conserv Biol 23:1406–1417. doi:10.1111/j.1523-1739.2009.01338.x

    Article  PubMed  Google Scholar 

  • Chey VK (2006) Impacts of forest conversion on biodiversity as indicated by moths. Malay Nat J 57:383–418

    Google Scholar 

  • Choi SW (2008a) Diversity and composition of larger moths in three different forest types of Southern Korea. Ecol Res 23:503–509. doi:10.1007/s11284-007-0406-8

    Article  CAS  Google Scholar 

  • Choi SW (2008b) Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool Sci 25:53–58. doi:10.2108/zsj.25.53

    Article  PubMed  Google Scholar 

  • Chokkalingam U, de Jong W (2001) Secondary forest: a working definition and typology. Int For Rev 3:19–26

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, UK, PRIMER-E

    Google Scholar 

  • Cleary KA, Waits LP, Finegan B (2016) Agricultural intensification alters bat assemblage composition and abundance in a dynamix Neotropical landscape. Biotropica. doi:10.1111/btp.12327

    Google Scholar 

  • Cooper RJ, Smith HR (1995) Predation on gypsy moth (Lepidoptera: Lymantriidae) egg masses by birds. Environ Entomol 24:571–575. doi:10.1093/ee/24.3.571

    Article  Google Scholar 

  • Corlett RT (2014) Ecological roles of animals in tropical forests. In: Köhl M, Pancel L (eds) Tropical forestry handbook. Springer, Berlin, pp 1–6. doi: 10.1007/978-3-642-41554-8_54-1

  • Corley RHV (2009) How much palm oil do we need? Environ Sci Policy 12:134–139. doi:10.1016/j.envsci.2008.10.011

    Article  CAS  Google Scholar 

  • Daily GC (1999) Developing a scientific basis for managing Earth’s life support systems. Conserv Ecol 3:14

    Article  Google Scholar 

  • Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358. doi:10.1111/j.1523-1739.2008.01096.x

    Article  PubMed  Google Scholar 

  • Dent DH, Wright SJ (2009) The future of tropical species in secondary forests: a quantitative review. Biol Conserv 142:2833–2843. doi:10.1016/j.biocon.2009.05.035

    Article  Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43:209–218. doi:10.1111/j.1365-2664.2006.01146.x

    Article  Google Scholar 

  • Edwards DP, Hodgson JA, Hamer KC, Mitchell SL, Ahmad AH, Cornell SJ, Wilcove DS (2010) Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv Lett 3:236–242. doi:10.1111/j.1755-263X.2010.00107.x

    Article  Google Scholar 

  • Edwards FA, Edwards DP, Larsen TH, Hsu WW, Benedick S, Chung A, Vun Khen C, Wilcove DS, Hamer KC (2014) Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Anim Conserv 17:163–173. doi:10.1111/acv.12074

    Article  CAS  PubMed  Google Scholar 

  • Eisenring M, Beck J, Agwanda B, Kioko E, Curran M (2016) Effects of habitat age and disturbance intensity on the biodiversity of three trophic levels in Central Kenya. Afr J Ecol. doi:10.1111/aje.12292

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • FAOSTAT (2016) FAOSTAT Online Statistical Service. http://faostat.fao.org. Accessed 18 Jan 2016

  • Faruk A, Belabut D, Ahmad N, Knell RJ, Garner TWJ (2013) Effects of oil-palm plantations on diversity of tropical anurans. Conserv Biol 27:615–624. doi:10.1111/cobi.12062

    Article  PubMed  Google Scholar 

  • Fiedler K, Truxa C (2012) Species richness measures fail in resolving diversity patterns of speciose forest moth assemblages. Biodivers Conserv 21:2499–2508. doi:10.1007/s10531-012-0311-5

    Article  Google Scholar 

  • Fiedler K, Hilt N, Brehm G, Schulze CH (2007) Moths at tropical forest margins—How mega-diverse insect assemblages respond to forest disturbance and recovery. In: Tscharntke T, Leuschner C, Zeller M, Guhardja E, Bidin A (eds) The stability of tropical rainforest margins: linking ecological, economic and social constraints of land use and conservation. Springer, Berlin, pp 39–60. doi:10.1007/978-3-540-30290-2_3

  • Finegan B (1996) Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends Ecol Evol 11:119–124. doi:10.1016/0169-5347(96)81090-1

    Article  CAS  PubMed  Google Scholar 

  • Finegan B, Hayes J, Delgado D, Gretzinger S (2004) Monitoreo ecológico del manejo forestal en el trópico húmedo: una guía para operadores forestales y certificadores con énfasis en bosques de alto valor para la conservación. San José, CR, FCENTROAMERICA/PROARCA/CATIE/OSU. http://www.wwfca.org/sala_redaccion/publicaciones/?133221/Monitoreo-ecologico-del-manejo-forestal-en-el-tropico-humedo-Una-guia-para-operadores-forestales-y-certificadores-con-enfasis-en-Bosques-de-Alto-Valor-para-la-Conservacion. Accessed 19 January 2013

  • Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545. doi:10.1016/j.tree.2008.06.012

    Article  PubMed  Google Scholar 

  • Fleishman E, Murphy DD (2009) A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conserv Biol 23:1109–1116. doi:10.1111/j.1523-1739.2009.01246.x

    Article  PubMed  Google Scholar 

  • Freudmann A, Mollik P, Tschapka M, Schulze CH (2015) Impacts of oil palm agriculture on phyllostomid bat assemblages. Biodivers Conserv 24:3583–3599. doi:10.1007/s10531-015-1021-6

    Article  Google Scholar 

  • Gallmetzer N, Schulze CH (2015) Impact of oil palm agriculture on understory amphibians and reptile: a Mesoamerican perspective. Glob Ecol Conserv 4:95–109. doi:10.1016/j.gecco.2015.05.008

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381. doi:10.1038/nature10425

    Article  CAS  PubMed  Google Scholar 

  • Gilroy JJ, Prescott GW, Cardenas JS, del Pliego González, Castañeda P, Sánchez A, Rojas-Murcia LE, Medina Uribe CA, Haugaasen T, Edwards DP (2015) Minimizing the biodiversity impact of Neotropical oil palm development. Glob Change Biol 21:1531–1540. doi:10.1111/gcb.12696

    Article  Google Scholar 

  • Hahn M, Brühl CA (2016) The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact 10:21–28. doi:10.1007/s11829-016-9414-3

    Article  Google Scholar 

  • Hahn M, Schotthöfer A, Schmitz J, Franke LA, Brühl CA (2015) The effects of agrochemicals on Lepidoptera, with a focus on moths, and their pollination service in field margin habitats. Agr Ecosyst Environ 207:153–162. doi:10.1016/j.agee.2015.04.002

    Article  CAS  Google Scholar 

  • Hawes J, da Silva Motta C, Overal WL, Barlow J, Gardner TA, Peres CA (2009) Diversity and composition of Amazonian moths in primary, secondary and plantation forests. J Trop Ecol 25:281–300. doi:10.1017/S0266467409006038

    Article  Google Scholar 

  • Hilt N, Fiedler K (2005) Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Divers Distrib 11:387–398. doi:10.1111/j.1366-9516.2005.00167.x

    Article  Google Scholar 

  • Hilt N, Fiedler K (2006) Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes? J Biogeogr 33:108–120. doi:10.1111/j.1365-2699.2005.01360.x

    Article  Google Scholar 

  • Hilt N, Brehm G, Fiedler K (2006) Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes. J Trop Ecol 22:155–166. doi:10.1017/S0266467405003056

    Article  Google Scholar 

  • Höbinger T, Schindler S, Seaman BS, Wrbka T, Weissenhofer A (2011) Impact of oil palm plantations on the structure of the agroforestry mosaic of La Gamba, southern Costa Rica: potential implications for biodiversity. Agrofor Syst 85:367–381. doi:10.1007/s10457-011-9425-0

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2013) iNext online: interpolation and extrapolation (Version 1.0) [Software]. http://chao.stat.nthu.edu.tw/blog/software-download/

  • Intachat J, Holloway JD, Speight MR (1997) The effects of different forest management practices on geometroid moth populations and their diversity in Peninsular Malaysia. J Trop For Sci 9:411–430

    Google Scholar 

  • Jacobs DS, Ratcliffe JM, Fullard JH (2008) Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation. Behav Ecol 19:1333–1342. doi:10.1093/beheco/arn071

    Article  Google Scholar 

  • Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, Larsen TH, Hsu WW, Benedick S, Hamer KC, Wilcove DS, Bruce C, Wang X, Levi T, Lott M, Emerson BC, Yu DW (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257. doi:10.1111/ele.12162

    Article  PubMed  Google Scholar 

  • Jonason D, Franzén M, Ranius T (2014) Surveying moths using light traps: effects of weather and time of year. PLoS ONE 9:e92453. doi:10.1371/journal.pone.0092453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kambach S, Guerra F, Beck SG, Hensen I, Schleuning M (2013) Human-induced disturbance alters pollinator communities in tropical mountain forests. Diversity 5:1–14. doi:10.3390/d5010001

    Article  Google Scholar 

  • Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC (2012) Intensive agriculture erodes β-diversity at large scales. Ecol Lett 15:963–970. doi:10.1111/j.1461-0248.2012.01815.x

    Article  PubMed  Google Scholar 

  • Kitching RL, Orr AG, Thalib L, Mitchell H, Hopkins MS, Graham AW (2000) Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J Appl Ecol 37:284–297. doi:10.1046/j.1365-2664.2000.00490.x

    Article  Google Scholar 

  • Kitching RL, Ashton LA, Nakamura A, Whitaker T, Khen CV (2013) Distance-driven species turnover in Bornean rainforests: homogeneity and heterogeneity in primary and post-logging forests. Ecography 36:675–682. doi:10.1111/j.1600-0587.2012.00023.x

    Article  Google Scholar 

  • Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64. doi:10.1111/j.1755-263X.2008.00011.x

    Article  Google Scholar 

  • Kristensen NP, Scoble MJ, Karsholt O (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747

    Google Scholar 

  • Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann NY Acad Sci 1223:1–38. doi:10.1111/j.1749-6632.2011.06004.x

    Article  PubMed  Google Scholar 

  • Legendre P, Anderson M (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Lemmon PE (1957) A new instrument for measuring forest overstory density. J For 55:667–668

    Google Scholar 

  • Livingston G, Jha S, Vega A, Gilbert L (2013) Conservation value and permeability of Neotropical oil palm landscapes for orchid bees. PLoS ONE 8(10):e78523. doi:10.1371/journal.pone.0078523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomov B, Keith DA, Britton DR, Hochuli DF (2006) Are butterflies and moths useful indicators for restoration monitoring? A pilot study in Sydney’s Cumberland Plain Woodland. Ecol Manag Restor 7:204–210. doi:10.1111/j.1442-8903.2006.00310.x

    Article  Google Scholar 

  • Lucey JM, Hill JK (2012) Spillover of insects from rain forest into adjacent oil palm plantations. Biotropica 44:368–377. doi:10.1111/j.1744-7429.2011.00824.x

    Article  Google Scholar 

  • Lucey JM, Tawatao N, Senior MJM, Chey VK, Benedick S, Hamer KC, Woodcock P, Newton RJ, Bottrell SH, Hill JK (2014) Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol Conserv 169:268–276. doi:10.1016/j.biocon.2013.11.014

    Article  Google Scholar 

  • Maas B, Clough Y, Tscharntke T (2013) Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol Lett 16:1480–1487. doi:10.1111/ele.12194

    Article  PubMed  Google Scholar 

  • MacDougall AS, McCann KS, Gellner G, Turkington R (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494:86–89. doi:10.1038/nature11869

    Article  CAS  PubMed  Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, pp 81–120

  • Mercer EV, Mercer TG, Sayok AK (2014) Effects of forest conversions to oil palm plantations on freshwater macroinvertebrates: a case study from Sarawak, Malaysia. J Land Use Sci 9:260–277. doi:10.1080/1747423X.2013.786149

    Article  Google Scholar 

  • Merckx T, Slade EM (2014) Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conserv Divers 7:453–461. doi:10.1111/icad.12068

    Article  Google Scholar 

  • Merckx T, Feber RE, Dulieu RL, Townsend MC, Parsons MS, Bourn NAD, Riordan P, Macdonald DW (2009) Effect of field margins on moths depends on species mobility: field-based evidence for landscape-scale conservation. Agr Ecosyst Environ 129:302–309. doi:10.1016/j.agee.2008.10.004

    Article  Google Scholar 

  • Merckx T, Feber RE, Mclaughlan C, Bourn NAD, Parsons MS, Townsend MC, Riordan P, Macdonald DW (2010) Shelter benefits less mobile moth species: the field-scale effect of hedgerow trees. Agr Ecosyst Environ 138:147–151. doi:10.1016/j.agee.2010.04.010

    Article  Google Scholar 

  • Merckx T, Feber RE, Hoare DJ, Parsons MS, Kelly CJ, Bourn NAD, Macdonald DW (2012a) Conserving threatened Lepidoptera: towards an effective woodland management policy in landscapes under intense human land-use. Biol Conserv 149:32–39. doi:10.1016/j.biocon.2012.02.005

    Article  Google Scholar 

  • Merckx T, Marini L, Feber RE, Macdonald DW (2012b) Hedgerow trees and extended-width field margins enhance macro-moth diversity: implications for management. Appl Ecol 49:1396–1404. doi:10.1111/j.1365-2664.2012.02211.x

    Article  Google Scholar 

  • Nakamura A, Catterall CP, House APN, Kitching RL, Burwell CJ (2006) The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use. J Insect Conserv 11:177–186. doi:10.1007/s10841-006-9034-9

    Article  Google Scholar 

  • New TR (2004) Moths (Insecta: Lepidoptera) and conservation: background and perspective. J Insect Conserv 8:79–94. doi:10.1007/s10841-004-1329-0

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. doi:10.1038/nature14324

    Article  CAS  PubMed  Google Scholar 

  • Nichols E, Uriarte M, Bunker DE, Favila ME, Slade EM, Vulinec K, Larsen T, Vaz-de-Mello FZ, Louzada J, Naeem S, Spector SH (2013) Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94:180–189. doi:10.1890/12-0251.1

    Article  PubMed  Google Scholar 

  • Norden N, Chazdon RL, Chao A, Jiang Y, Vílchez-Alvarado B (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol Lett 12:385–394. doi:10.1111/j.1461-0248.2009.01292.x

    Article  PubMed  Google Scholar 

  • Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR (2008) Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl Ecol 9:4–12. doi:10.1016/j.baae.2007.06.014

    Article  Google Scholar 

  • Pardo LE, Maurance WF, Clements GP, Edwards W (2015) The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know. Trop Conserv Sci 8:828–845

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6:780–793. doi:10.1016/j.ecolind.2005.03.005

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329:1298–1303. doi:10.1126/science.1189138

    Article  CAS  PubMed  Google Scholar 

  • Ricketts TH, Daily GC, Ehrlich PR, Fay JP (2001) Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conserv Biol 15:378–388. doi:10.1046/j.1523-1739.2001.015002378.x

    Article  Google Scholar 

  • Rydell J, Lancaster WC (2000) Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88:13–18. doi:10.1034/j.1600-0706.2000.880103.x

    Article  Google Scholar 

  • Sayer J, Ghazoul J, Nelson P, Boedhihartono AK (2012) Oil palm expansion transforms tropical landscapes and livelihoods. Glob Food Sec 1:114–119. doi:10.1016/j.gfs.2012.10.003

    Article  Google Scholar 

  • Schulze CH, Fiedler K (2003) Hawkmoth diversity in Northern Borneo does not reflect the influence of anthropogenic habitat disturbance. Ecotropica 9:99–102

    Google Scholar 

  • Schulze CH, Schneeweihs S, Fiedler K (2010) The potential of land-use systems for maintaining tropical forest butterfly diversity. In: Tscharntke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change. Springer Berlin, pp 73–96. doi: 10.1007/978-3-642-00493-3_3

  • Scoble MJ (1999) Geometrid moths of the world: a catalogue (Lepidoptera: Geometridae). CSIRO Publishing and Apollo Books, Collingwood

    Google Scholar 

  • Shaver I, Chain-Guadarrama A, Cleary KA, Sanfiorenzo A, Santiago-García RJ, Finegan B, Hormel L, Sibelet N, Vierling LA, Bosque-Pérez NA, DeClerck F, Fagan ME, Waits LP (2015) Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob Environ Change 32:74–86. doi:10.1016/j.gloenvcha.2015.02.006

    Article  Google Scholar 

  • Slade EM, Merckx T, Riutta T, Bebber DP, Redhead D, Riordan P, Macdonald DW (2013) Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 94:1519–1530. doi:10.1890/12-1366.1

    Article  PubMed  Google Scholar 

  • Smit HH, Meijaard E, van der Laan C, Mantel S, Budiman A, Verweij P (2013) Breaking the link between environmental degradation and oil palm expansion: a method for enabling sustainable oil palm expansion. PLoS ONE 8:e68610. doi:10.1371/journal.pone.0068610

    Article  CAS  PubMed Central  Google Scholar 

  • Summerville KS (2004) Functional groups and species replacement: testing for the effects of habitat loss on moth communities. J Lepid Soc 58:114–117

    Google Scholar 

  • Summerville KS, Crist TO (2004) Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography 27:3–12. doi:10.1111/j.0906-7590.2004.03664.x

    Article  Google Scholar 

  • Tabarelli M (2010) Tropical biodiversity in human-modified landscapes: what is our trump card? Biotropica 42:553–554. doi:10.1111/j.1744-7429.2010.00678.x

    Article  Google Scholar 

  • Taki H, Makihara H, Matsumura T, Hasegawa M, Matsuura T, Tanaka H, Makino S, Okabe K (2012) Evaluation of secondary forests as alternative habitats to primary forests for flower-visiting insects. J Insect Conserv 17:549–556. doi:10.1007/s10841-012-9539-3

    Article  Google Scholar 

  • Tan KT, Lee KT, Mohamed AR, Bhatia S (2009) Palm oil: addressing issues and towards sustainable development. Renew Sust Energy Rev 13:420–427. doi:10.1016/j.rser.2007.10.001

    Article  CAS  Google Scholar 

  • Thiollay J (1992) Influence of selective logging on bird species diversity in a Guianan rain forest. Conserv Biol 6:47–63. doi:10.1046/j.1523-1739.1992.610047.x

    Article  Google Scholar 

  • Truxa C, Fiedler K (2012) Attraction to light- from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur J Entomol 109:77–84

    Article  Google Scholar 

  • Villela AA, Jaccoud DB, Rosa LP, Freitas MV (2014) Status and prospects of oil palm in the Brazilian Amazon. Biomass Bioenerg 67:270–278. doi:10.1016/j.biombioe.2014.05.005

    Article  Google Scholar 

  • Warton DI, Hui FK (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10. doi:10.1890/10-0340.1

    Article  PubMed  Google Scholar 

  • Watson A, Goodger DT (1986) Catalogue of the Neotropical tiger-moths. Occas Papers Syst Entomol 1:1–71

    Google Scholar 

  • Weissenhofer A, Huber W (2008) The climate of the Esquinas rainforest. In: Weissenhofer A, Huber W, Mayer V, Pamperl S, Weber A, Aubrecht G (eds) Natural and cultural history of the Golfo Dulce region, Costa Rica. Stapfia 88, pp 59–62

  • Weissenhofer A, Huber W, Klingler M (2008) Geography of the Golfo Dulce region. In: Weissenhofer A, Huber W, Mayer V, Pamperl S, Weber A, Aubrecht G (eds) Natural and cultural history of the Golfo Dulce region, Costa Rica. Stapfia 88, pp 65–96

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22. doi:10.1146/annurev-ecolsys-102710-145042

    Article  Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301. doi:10.1111/j.1744-7429.2006.00154.x

    Article  Google Scholar 

  • Yaap B, Struebig MJ, Paoli G, Koh LP (2010) Mitigating the biodiversity impacts of oil palm development. CAB Rev 5:1–11. doi:10.1079/PAVSNNR20105019

    Article  Google Scholar 

  • Yue S, Brodie JF, Zipkin EF, Bernard H (2015) Oil palm plantations fail to support mammal diversity. Ecol Appl 25:2285–2292. doi:10.1890/14-1928.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff and community at La Gamba Tropical Station and CATIE for their support in project logistics and field work. Christian Schulze provided guidance during selection of the study sites as well as collection and processing of moth specimens. Thank you to Diego Delgado and Sven Günter for their aid in the design of the study and project logistics, and Eddy Camacho for providing essential materials. INBio granted access to their Lepidoptera reference collection. Gunnar Brehm, Dominik Rabl, Vincent Benoit, Michel Laguerre, Isidro Chacón, Bernal Espinoza, José Montero and Nelson Zamora aided in the identification of moth and plant specimens. We thank Sergio Vilchez and Pablo E. Gutiérrez-Fonseca for their aid in statistical analyses, as well as Nina Gallmetzer and Waldemar Alcobas in the preparation of the map. This research was funded by grants from the Rufford Foundation (Ref: 12885-1) and from the Faculty of Life Sciences at the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aura M. Alonso-Rodríguez.

Additional information

Communicated by Akihiro Nakamura.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Appendix

Appendix

See Figure 5 and Tables 5, 6, 7.

Table 5 Characteristics of the 20 sampling sites within old-growth forest interior (FI), old-growth forest margin (FM), young secondary forest (YSF) and oil palm plantation (OPP) habitats
Table 6 Vegetation descriptors for the 20 sampling sites within old-growth forest interior (FI), old-growth forest margin (FM), young secondary forest (YSF) and oil palm plantation (OPP) habitats
Table 7 Full list of taxa and abundances of geometrid and arctiine moths from 6 months of automatic light-trapping at five old-growth forest interior (FI), five old-growth forest margin (FM), five young secondary forest (YSF) and five oil palm plantation (OPP) sites within the tropical lowlands of southwestern Costa Rica
Fig. 5
figure 5

Ordination of the sampling sites within old-growth forest interior (FI), old-growth forest margin (FM), young secondary forest (YSF) and oil palm plantation (OPP) habitats, using principal component analysis of nine vegetation variables based on Euclidean distances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Rodríguez, A.M., Finegan, B. & Fiedler, K. Neotropical moth assemblages degrade due to oil palm expansion. Biodivers Conserv 26, 2295–2326 (2017). https://doi.org/10.1007/s10531-017-1357-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1357-1

Keywords

Palabras claves

Profiles

  1. Konrad Fiedler