Biodiversity and Conservation

, Volume 26, Issue 8, pp 1943–1958 | Cite as

Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests

  • Lucie Zemanová
  • Volodymyr Trotsiuk
  • Robert C. Morrissey
  • Radek Bače
  • Martin Mikoláš
  • Miroslav Svoboda
Original Paper
  • 245 Downloads
Part of the following topical collections:
  1. Forest and plantation biodiversity

Abstract

Habitat loss and fragmentation can negatively impact the persistence of dispersal-limited lichen species with narrow niches. Rapid change in microclimate due to canopy dieback exposes species to additional stressors that may limit their capacity to survive and colonize. We studied the importance of old trees as micro-refuges and microclimate stability in maintaining lichen survival and diversity. The study was situated in mountain Norway spruce (Picea abies) forests of the Gorgany Mountains of the Ukrainian Carpathian mountain belt. Lichens were collected on 13 circular study plots (1000 m2). Dendrochronological methods were used to reconstruct age structure and maximum disturbance event history. A linear mixed effects model and general additive models were used to explain patterns and variability of lichens based on stand age and disturbance history for each plot. Tree age was the strongest variable influencing lichen diversity and composition. Recent (<80 years ago) severely disturbed plots were colonized only by the most common species, however, old trees (>200 years old) that survived the disturbances served as microrefuges for the habitat-specialized and/or dispersal limited species, thus epiphytic lichen biodiversity was markedly higher on those plots in comparison to plots without any old trees. Most species were able to survive microclimatic change after disturbances, or recolonize disturbed patches from surrounding old-growth forests. We concluded that the survival of old trees after disturbances could maintain and/or recover large portions of epiphytic lichen biodiversity even in altered microclimates.

Keywords

Biodiversity Colonization Forest continuity Microclimate Species refuges Tree age 

Notes

Acknowledgements

This work was supported by the Czech Science Foundation project (GACR 15-14840S) and the Czech University of Life Sciences in Prague (CIGA No. 20154316, IGA No. B02/15 and IGA 20124262). We would like to thank the Ukrainian National Forestry University and the Gorgany forestry enterprise for administrative and technical support in collecting the data. Special thanks to Zdeněk Palice for help reviewing and revising the lichenological material.

References

  1. Aptroot A, Van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298CrossRefPubMedGoogle Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2014) lme4. Linear mixed-effect models using Eigen and S4. R package version 1.1-7Google Scholar
  3. Benson S, Coxson DS (2002) Lichen colonization and gap structure in wet-temperate rainforests of Northern Interior British Columbia. Bryologist 105:673–692CrossRefGoogle Scholar
  4. Berglund H, Jonsson BG (2005) Verifying an extinction debt among lichens and fungi in Northern Swedish boreal forests. Conserv Biol 19(2):338–348CrossRefGoogle Scholar
  5. Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-Fries H, Foullois N, Müller J (2014) Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett 8:272–281CrossRefGoogle Scholar
  6. Boudreault C, Coxson DS, Vincent E, Bergeron Y, Marsh J (2008) Variation in epiphytic lichen and bryophyte composition and diversity along a gradient of productivity in Populus tremuloides stands of northeastern British Columbia, Canada. Ecoscience 15:101–112CrossRefGoogle Scholar
  7. Bradtka J, Bässler C, Müller J (2010) Baumbewohnende Flechten als Zeiger für Prozessschutz und ökologische Kontinuität im Nationalpark Bayerischer Wald. Epiphytic lichens indicating process protection and eclogical continuity in the Bavaria Forest National Park. Waldökologie, Landschaftsforshung und Naturschutz 9:49–63Google Scholar
  8. Cieśliński S, Czyźewska K, Fabiszewski J (2006) Red list of the lichens in Poland. Czerwona lista porostów w Polsce. in Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z. (eds). Red list of plants and fungi in Poland. Czerwona lista roślin i grzybów Polski. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 71-89Google Scholar
  9. Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M, Leuschner Ch (2013) Separation forest continuity from tree age effects on plant diversity in the ground and epiphyte vegetation of a Central European mountain spruce forest. Flora 208:238–246CrossRefGoogle Scholar
  10. Ellis ChJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656CrossRefGoogle Scholar
  11. Ellis ChJ, Yahr R, Coppins BJ (2009) Local extent of old-growth woodland modifies epiphyte response to climate change. J Biogeogr 36:302–313CrossRefGoogle Scholar
  12. Esseen PA (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. J Veg Sci 17:185–194Google Scholar
  13. Fedrowitz K, Kuusinen M, Snäll T (2012) Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. J Appl Ecol 49(2):493–502CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fritz Ö, Niklasson M, Churski M (2008) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106CrossRefGoogle Scholar
  15. Gauslaa Y, Palmqvist K, Solhaug KA, Holien H, Hilmo O, Nybakken L, Myhre LC, Ohlson M (2007) Growth of epiphytic old forest lichens across climatic and successional gradients. Can J For Res 37:1832–1845CrossRefGoogle Scholar
  16. Gauslaa Y, Lie M, Ohlson M (2008) Epiphytic lichen biomass in a boreal Norway spruce forest. Lichenologist 40:257–266CrossRefGoogle Scholar
  17. Hanski I (1999) Metapopulation ecology. Oxford University Press, New YorkGoogle Scholar
  18. Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127CrossRefPubMedGoogle Scholar
  19. Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conserv 93:43–53CrossRefGoogle Scholar
  20. Holien H (1997) The lichen flora on Picea abies in suboceanic spruce forests area in Central Norway with emphasis on the relationship to site and stand parameters. Nord J Bot 17:55–76CrossRefGoogle Scholar
  21. Johansson P (2008) Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biol Conserv 141:1933–1944CrossRefGoogle Scholar
  22. Johansson P, Wetmore CM, Carlson DJ, Reich PB, Thor G (2006) Habitat preference, growth form, vegetative dispersal and population size of lichens along a wildfire severity gradient. Bryologist 109:527–540CrossRefGoogle Scholar
  23. Johansson V, Ranius T, Snäll T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 93(2):235–241CrossRefPubMedGoogle Scholar
  24. Johansson V, Ranius T, Snäll T (2013) Epiphyte metapopulation persistence after drastic habitat decline and low tree regeneration: time-lag and effects of conservation actions. J Appl Ecol 50:414–422CrossRefGoogle Scholar
  25. Jonnson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood: lessons for dead wood management. Silva Fenn 39(2):289–309Google Scholar
  26. Jüriado I, Suija A, Liira J (2006) Biogeographical determinants of lichen species diversity on islets in the West-Estonian Archipelago. J Veg Sci 17:125–134CrossRefGoogle Scholar
  27. Knorn JAN, Kuemmerle T, Radeloff VC, Keeton WS, Gancz V, Biriş IA, Svoboda M, Griffiths P, Hahatis A, Hostert P (2013) Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environ Conserv 40(2):182–193CrossRefGoogle Scholar
  28. Lie MH, Arup U, Grytnes JA, Ohlson M (2009) The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodivers Conserv 18:3579–3596CrossRefGoogle Scholar
  29. Liška J, Palice Z (2010) Červený seznam lišejníků České republiky (verze 1.1). Red List of lichens of the Czech Republic (version 1.1). Příroda 20:3–66Google Scholar
  30. Löbel S, Snäll T, Rydin H (2006) Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented landscapes. J Ecol 94:856–868CrossRefGoogle Scholar
  31. Lõhmus P (2003) Composition and substrata of forest lichens in Estonia: a meta-analysis. Folia Cryptogam Est. 40:19–38Google Scholar
  32. Makarevych MF, Navrotskaya IL, Yudina IV (1982) Atlas of geographic distribution of the lichens of the Ukrainian Carpathians. Kiev, Naukova dumka, p 312Google Scholar
  33. Marini L, Nascimebene J, Nimis PL (2011) Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ 409:4381–4386CrossRefPubMedGoogle Scholar
  34. Marmor L, Törra T, Saag L, Radlane T (2011) Effects of forest continuity and tree age on epiphytic lichen biota in coniferous forests in Estonia. Ecol Indic 11:1270–1276CrossRefGoogle Scholar
  35. Meier E, Paal J, Liira J, Jüriado I (2005) Influence of tree stand age and management on the speices diversity in Estonian eutrophic alvar and bore-nemoral Pinus sylvestris forests. Scand J For Res 20:135–144CrossRefGoogle Scholar
  36. Mikoláš M, Tejkal M, Kuemmerle T, Griffiths P, Svoboda M, Hlásny T, Leitão PJ, Morrissey RC (2016) Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landsc Ecol 32(1):1–17Google Scholar
  37. Nascimbene J, Marini L, Motta R, Nimis PL (2009) Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers Conserv 18:1509–1522CrossRefGoogle Scholar
  38. Nascimbene J, Marini L, Nimis PL (2010) Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. For Ecol Manage 260:603–609CrossRefGoogle Scholar
  39. Nilsson SG, Hedin J, Niklasson M (2001) Biodiversity and its assessment in boreal and nemoral forests. Scand J For Res 3:10–26CrossRefGoogle Scholar
  40. Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Dordrecht, p 408CrossRefGoogle Scholar
  41. Parviainen J, Bücking W, Vandekerkhove K, Schuck A, Päivinen R (2000) Strict forest reserves in Europe: efforts to enhance biodiversity and research on forests left for free development in Europe (EU-COST-Action E4). Forestry 73:107–118CrossRefGoogle Scholar
  42. Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris. Mol Ecol 20:3936–3948CrossRefPubMedGoogle Scholar
  43. Pišút I, Guttová A, Lackovičová A, Lisická E (2001) Červený zoznam lišajníkov Slovenska (December 2001). in Baláž D, Marhold K, Urban P (eds). Červený zoznam rastlín a živočíchov slovenska. Ochrana prírody 20 (Suppl.): 23-30Google Scholar
  44. Sætersdal M, Gjerde I, Blom HH (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biol Conserv 122:305–316CrossRefGoogle Scholar
  45. Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633CrossRefGoogle Scholar
  46. Snäll T, Ribeiro PJ, Rydin H (2003) Spatial occurrence and colonisations in patch-tracking metapopulations: local conditions versus dispersal. Oikos 103:566–578CrossRefGoogle Scholar
  47. Snäll T, Ehrlén J, Rydin H (2005) Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86:106–115CrossRefGoogle Scholar
  48. Svoboda M, Pouska V (2008) Structure of a Central-European mountain spruce old-growth forest with respect to historical development. For Ecol Manag 255:2177–2188CrossRefGoogle Scholar
  49. Svoboda M, Janda P, Bače R, Fraver S, Nagel TA, Rejzek J, Mikoláš M, Douda J, Boublík K, Šamonil P, Čada V, Trotsiuk V, Teodosiu M, Bouriaud O, Biriş AI, Sýkora O, Uzel P, Zelenka J, Sedlák V, Lehejček J (2014) Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J Veg Sci 25:386–401CrossRefGoogle Scholar
  50. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  51. Trotsiuk V, Svoboda M, Janda P, Mikoláš M, Bače R, Rejzek J, Šamonil P, Chaskovskyy O, Korol M, Myklush S (2014) A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. For Ecol Manag 334:144–153CrossRefGoogle Scholar
  52. Wesołowski T (2005) Virtual conservation: how the European Union is turning a blind eye to its vanishing primeval forests. Conserv Biol 19:1349–1358CrossRefGoogle Scholar
  53. Wood S (2016) mgcv. Mixed GAM computation vehicle with GCV/AIC/REML smoothness extimation. R package version 1.8-14Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of Environmental SciencesCzech University of Life SciencesPragueCzech Republic
  2. 2.Department of Forest Ecology, Faculty of Forestry and Wood ScienceCzech University of Life SciencesPragueCzech Republic

Personalised recommendations