Skip to main content

Advertisement

Log in

Joint ecological, geographical and cultural approach to identify territories of opportunity for large vertebrates conservation in Mexico

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The objective of the present paper is to provide a holistic framework to delineate “territories of opportunity” where agrarian communities can manage areas to enhance the conservation of large vertebrates. The study was conducted Mexico, which is sociologically, culturally and ecologically complex, similar to other “megadiverse” countries. We conducted ensemble niche modeling of endangered top predators to define a set of large vertebrate species. Environmental attributes were used to perform three distance-based and two artificial intelligence-based algorithms. Socio-cultural attributes were included to depict agricultural communities with strong social government schemes and clear evidence of well-managed natural resources. Other socio-economic attributes such as land acquisition cost, human agglomeration and anthropogenic land use were included in the analysis. Scenarios were computed and displayed cartographically with the aid of a geographic information system. Results showed that the largest concentration of biodiversity converges on regions with large land cover persistence and high local governance, defined as potential willingness to engage in conservation actions. The cartographic areas identified overlapped with current Mexican protected areas in only 2.7% of the country. Thus, conservation law enforcement in most of the country seems to be ineffective. Here we show that, in a number of territories, agrarian communities that have coexisted for millennia with umbrella species can be regarded as allies in biodiversity conservation. Results are discussed in the light of their relevance for future niche modeling, environmental policy design and implications for climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ariano-Sánchez D (2006) The Guatemalan beaded lizard: endangered inhabitant of a unique ecosystem. Iguana 13:179–183

    Google Scholar 

  • Ávila-Blomberg A (2008) La diversidad lingüística y el conocimiento etnobiológico. In: Sarukhán J (ed) El Capital Natural de México. CONABIO, Mexico, pp 497–556

    Google Scholar 

  • Balmford A (2002) Selecting sites for conservation. In: Norris K, Pain DL (eds) Conservation bird biodiversity: general principles and their application. Cambridge University Press, Cambridge, pp 74–104

    Chapter  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Berkes F, Folke C (1998) Linking social and ecological systems for resilience and sustainability. In: Berkes F, Folke C (eds) Linking social and ecological systems: management practices and social mechanisms for building resilience, vol 1, pp 13–20

  • Berkes F, Coldinng J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10(5):1262–1551

    Article  Google Scholar 

  • Bode M et al (2008) Cost-effective global conservation spending is robust to taxonomic group. Proc Natl Acad Sci USA 105:6498–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonn A, Rodrigues ASL, Gaston KJ (2002) Threatened and endemic species: ¿are they good indicators of patterns of biodiversity on a national scale? Ecol Lett 5:733–741

    Article  Google Scholar 

  • Bray DB, Merino-Perez L (2003) El Balcón, Guerrero: a case study of globalization benefiting a forest community. In: Wise TA, Salazar H, Carlsen L (eds) Confronting globalization: Economic integration and popular resistance in Mexico. Kumarian Press, Bloomfield, pp 65–80

    Google Scholar 

  • Bray DB, Velázquez A (2009) From displacement-based conservation to placebased conservation. Conserv Soc 7:11–14

    Article  Google Scholar 

  • Bray DB, Merino-Pérez L, Barry D eds (2007) Los Bosques Comunitarios de México. Manejo Sustentable de Paisajes Forestales. INE-SEMARNAT, Consejo Civil Mexicano para la Silvicultura Sostenible, Instituto de Geografía UNAM, Florida International University. México, pp 443

  • Bray DB, Duran E, Ramos VH, Mas JF, Velázquez A, McNab BRB, Barry D, Radachowsky J (2008) Tropical deforestation, community forests, and protected areas in the Maya Forest. Ecol Soc 13:56

    Article  Google Scholar 

  • Brechin SR, Wilshusen PR, Fortwangler CL, West PC (2003) Contested nature. Promoting international biodiversity with social justice in the twenty-first century. State University of New York Press, New York

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  • Bruner AG (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128

    Article  CAS  PubMed  Google Scholar 

  • Busby JR (1991) BIOCLIM: a bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Canberra, pp 64–68

    Google Scholar 

  • Butchart SH et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modeling procedure for mapping distributions of plants and animals. Biodivers Conserv 2:667–680

    Article  Google Scholar 

  • Carvajal S, Caso A, Downey P, Moreno A, Tewes M (2007) Conference 17–20 September 2007: programme and abstracts. Wildlife Conservation Research Unit, Oxford, p 118

    Google Scholar 

  • Ceballos G, Pardo ED, Espinosa E, Flores-Villela O, García A, Martínez L, Martínez-Meyer E, Navarro A, Ochoa L. (2009) Zonas críticas y de alto riesgo para la conservación de la biodiversidad de México. In: CONABIO (ed) Capital natural de México, vol. II: Estado de conservación y tendencias de cambio. México, pp 675–600

  • CONABIO (2011) Águila real (Aquila crysaetos canadensis). In: Comisión Nacional de Áreas Naturales Protegidas and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (eds) Fichas de especies prioritarias. México

  • Corsi F, Dupré E, Boitani L (1999) A large-scale model of wolf distribution in Italy for conservation planning. Conserv Biol 13:150–159

    Article  Google Scholar 

  • De Oliveira TG (1998) Herpailurus yagouaroundi. Mamm Species 578:1–6

    Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Dillon A, Kelly MJ (2008) Ocelot home range, overlap and density: comparing radio telemetry with camera trapping. J Zool 275:391–398

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Res 28:137–167

    Article  Google Scholar 

  • Don-Crider DL (1995) Population characteristics and home range dynamics of a black bear population in northern Coahuila, Mexico. MS thesis, Texas A&M University, Texas

  • Duran-Zuazo VH, Rodriguez-Pleguezuelo CR, Francia-Martinez JR, Martin-Peinado FJ, Graaff J (2013) Land-use changes in a small watershed in the Mediterranean landscape (SE Spain): environmental implications of a shift towards subtropical crops. J Land Use Sci 8:47–58

    Article  Google Scholar 

  • Eastman JR, IDRISI S (2012) Clark University. Worcester, MA, USA

  • Eklund J, Arponen A, Visconti P, Cabeza M (2011) Governance factors in the identification of global conservation priorities for mammals. Phil Trans R Soc B 366:2661–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ellis EA, Porter-Bolland L (2008) Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. Forest Ecol Manag 256:1971–1983

    Article  Google Scholar 

  • Escalante T, Sánchez-Cordero V, Morrone JJ, Linaje M (2007) Areas of endemism of mexican terrestrial mammals: a case study using species ecological niche modeling, parsimony analysis of endemicity and goloboff fit. Interciencia 32(3):151–159

    Google Scholar 

  • Escalante-Pliego P, Navarro-Sigüenza AG, Peterson AT (1993) A geographic, historical, and ecological analysis of avian diversity in Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) The biological diversity of Mexico: origins and distribution. Oxford University Press, New York, pp 281–307

    Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Faleiro FV, Loyola RD (2013) Socioeconomic and political trade-offs in biodiversity conservation: a case study of the Cerrado Biodiversity Hotspot, Brazil. Divers Dist 19:977–988

    Article  Google Scholar 

  • Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2007) Gridded livestock of the world. In: Wint GGW, Robinson T (eds) Animal production and health division. FAO, Rome, p 131

    Google Scholar 

  • Figueroa F, Sánchez-Cordero V (2008) Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodivers Conserv 17:3223–3240

    Article  Google Scholar 

  • Foley JA et al (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive governance of social–ecological systems. Annu Rev Environ Resour 30:441–473

    Article  Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and predictions. Cambridge University Press, Cambridge, p 233

    Google Scholar 

  • Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Kevin J (2007) Gaston Psychological benefits of greenspace increase with biodiversity. Biol Lett 3:390–394

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Frapolli E, Ramos-Fernandez G, Galicia E, Serrano A (2009) The complex reality of biodiversity conservation through Natural Protected Area policy: three cases from the Yucatan Peninsula, Mexico. Land Use Policy 26:715–722

    Article  Google Scholar 

  • Gaston KJ (2002) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Gaston AJ, Stockton SA, Smith JL (2006) Species-area relationships and the impact of deer-browse in the complex phytogeography of the Haida Gwaii archipelago (Queen Charlotte Islands) British Columbia. Ecoscience 13(4):511–522

    Article  Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52(2):143–150

    Article  Google Scholar 

  • Gilpin ME, Soul C (1986) Minimum viable populations: processes of species extinction. In: Soule ME (ed) Conservation Biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 19–34

    Google Scholar 

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocations as a species conservation tool: status and strategy. Science 245:477–480

    Article  CAS  PubMed  Google Scholar 

  • Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hirzel AH, Gwenaëlle LL (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381

    Article  Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Hoyo JD, Elliot A, Christie DA (2005) Handbook of the birds of the world (Volume 10): Cuckoo-shrikes to Thrushes. Lynx Editions, Barcelona, Spain

  • Illoldi-Rangel P, Fuller T, Linaje M, Pappas C, Sánchez-Cordero V, Sarkar S (2008) Solving the maximum representation problem to prioritize areas for the conservation of terrestrial mammals at risk in Oaxaca. Divers Distrib 14:493–508

    Article  Google Scholar 

  • INEGI (2005) Conjunto de uso de suelo y vegetación a escala 1:250,000, Serie III. DDG-INEGI, México

    Google Scholar 

  • INEGI (2011) Conjunto de uso de suelo y vegetación a escala 1:250,000, Serie V. DDG-INEGI, México

    Google Scholar 

  • International Union for Conservation of Nature (IUCN) (2012) IUCN red list of threatened species. Version 2011.1

  • Jones M, MacLeod G (2004) Towards a regional renaissance? Reconfiguring and rescaling England’s economic governance. Trans Inst Br Geogr 24:295–313

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol Lett 12:1–17

    Article  Google Scholar 

  • Klooster D, Masera O (2000) Community forest management in Mexico: carbon mitigation and biodiversity conservation through rural development. Glob Environ Chang 10:259–272

    Article  Google Scholar 

  • Knight AT, Cowling RM, Possingham HP, Wilson KA (2009) From theory to practice: designing and situating spatial prioritization approaches to better implement conservation action. In: Moilanen A (ed) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 249–259

    Google Scholar 

  • Koleff P, Urquiza-Haas T, coords (2011) Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México, p 244

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Soule M (ed) Viable populations for conservation. Cambridge University Press. Cambridge, Loh and Harmon, pp 87–124

  • Loh J, Harmon D (2005) A global index of biocultural diversity. Ecolo indic 5(3):231–241

    Article  Google Scholar 

  • Lopez-Feldman A, Taylor JE, Yúnez-Naude A (2011) Natural resource dependence in rural Mexico. Investig Econ 278:23–44

    Google Scholar 

  • Loyola RD, de Oliveira G, Diniz-Filho JA, Lewinsohn TM (2008) Conservation of neotropical carnivores under different priorization scenarios: mapping species traits to minimize conservation conflicts. Divers Distrib 14:949–960

    Article  Google Scholar 

  • Madrid JA, Madrid HD, Funes SH, Lopez J, Botzoc R, Ramos A (1991) Reproductive biology and behavior Ornate Hawk-eagle in Tikal National Park. In: Whitacre DF, Burnham WA, Jenny JP (eds) Maya project: use of raptos as environmental indices for design and management of protect area sand for building local capacity for conservation in Latin America. The Peregrine Fund, Inc., Boise, Idaho, Progress Report 4, pp 93–113

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modeling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Mas JF (2005) Un método para combinar datos espectrales e información auxiliar en una red artificial neuronal. Anais XII Simposio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, pp 3543–3549

  • Mas JF et al (2004) Assessing land use/cover changes: a nationwide multidate spatial database for Mexico. Int J Appl Earth Obs 5:249–261

    Article  Google Scholar 

  • Miles L, Kapos V (2008) Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications. Science 320:1454–1455

    Article  CAS  PubMed  Google Scholar 

  • Mittermeier RA, Myers N, Robles GP, Mittermeier CG (eds) (1999) Hotspots. Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Agrupacion Sierra Madre, Mexico

    Google Scholar 

  • Moffett A, Sarkar S (2006) Incorporating multiple criteria into the design of conservation area networks: a minireview with recommendations. Divers Distrib 12:125–137

    Article  Google Scholar 

  • Moilanen A, Possingham HP, Wilson KA (2009) Spatial conservation prioritization: past, present and future. In: Moilanen A, Wilson KA, Possingham HA (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 260–268

  • Moilanen A, Anderson BJ, Eigenbrod F et al (2011) Balancing alternative land uses in conservation prioritization. Ecol Appl 21:1419–1426

    Article  PubMed  Google Scholar 

  • Muñiz-Lopéz R (2008) Revisión de la situación del Águila Harpía Harpia harpyja en Ecuador. Cotinga 29:42–47

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  CAS  PubMed  Google Scholar 

  • Naughton-Treves L, Alvarez-Berríos NA, Brandon K, Bruner A, Holland M, Ponce C, Saenz C, Suarez L, Treves A (2005a) Expanding protected areas and incorporating human resource use: a study of 15 forest parks in Ecuador and Peru. Sustainability 2(2):32–44

  • Naughton-Treves L, Holland MB, Brandon, K (2005b) The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu Rev Environ Resour 30:219–252

  • Navarro-Sigüenza AG, Lira-Noriega A, del Coro Arizmendi M, Berlanga H, Koleff P, García-Moreno J, Peterson AT (2011) Áreas de conservación para las aves: hacia la integración de criterios de priorización. In: Koleff P, Urquiza-Haas T (coords) Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México, pp 89–108

  • Noble IR, Dirzo R (1997) Forests as human-dominated ecosystems. Science 277:522–525

    Article  CAS  Google Scholar 

  • Noss RF, Harris LD (1986) Nodes, networks, and MUMS: preserving diversity at all scales. J Environ Manag 10:299–309

    Article  Google Scholar 

  • Ochoa-Ochoa L, Vázquez LB, Urbina-Cardona JN, Flores-Villela O (2011) Priorización de áreas para conservación de la herpetofauna utilizando diferentes métodos de selección. In: Koleff P, Urquiza-Haas T (coords) Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México, pp 89–108

  • Ortega-Huerta MA, Peterson AT (2004) Modelling spatial patterns of biodiversity for conservation prioritization in North-eastern Mexico. Divers Distrib 10:39–54

    Article  Google Scholar 

  • Ostrom A (2010) Analyzing collective action. Agric Econ 41:155–166

    Article  Google Scholar 

  • Pérez-Vega A, Mas JF, Velázquez A, Vázquez L (2008) Land cover diversity patterns in Mexico based upon topographic features. Interciencia 33:88–95

    Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr 17:135–144

    Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pressey RL, Bottrill MC (2008) Opportunism, threats and the evolution of systematic conservation planning. Conserv Biol 22:1340–1345

    Article  PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond [Biol] 267:1947–1952

    Article  CAS  Google Scholar 

  • Raffestin C, Butler SA (2012) Space, territory, and territoriality. Environ Plan D 30:121–141

    Article  Google Scholar 

  • Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:1–8

    Article  Google Scholar 

  • Rangel TF, Diniz-Filho JA, Araújo MB (2009) BIOENSEMBLES 1.0. Software for computer intensive ensemble forecasting of species distributions under climate change. Goiás, Madrid, Évora

  • Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Roura-Pascual N, Brorons L, Peterson AT, Thuiller W (2008) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol Invas 11:1017–1031

    Article  Google Scholar 

  • Salvatore M, Pozzi F, Ataman E, Haddleston B, Bloise M (2005) Mapping global urban and rural population distributions. Environment and natural resources working paper 24. Food and Agricultural Organizations of the United Nations. Roma

  • Sarukhán J (2011) Presentación. Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. In: Koleff P, Urquiza-Haas T (coords). Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México, pp 5

  • Sarukhán J, Urquiza-Haas T, Koleff P et al (2015) strategic actions to value, conserve, and restore the natural capital of megadiversity countries: the case of Mexico. BioScience 65:164

    Article  PubMed  Google Scholar 

  • Scognamillo D, Maxit IE, Sunquist M, Polisar J (2003) Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J Zool 259:269–279

    Article  Google Scholar 

  • SEMARNAT (Secretaría del Medio Ambiente Recursos Naturales y Pesca) (2010) Norma Oficial Mexicana, NOM-059-ECOL-SEMARNAT-2001, Protección ambiental, especies nativas de México, Flora y Fauna Silvestre-Categorías de riesgo y especificación por su inclusión, exclusión o cambio-Lista de especies en riesgo. In: Diario Oficial de la Federación. 2nd edition. México, DF, pp 1–86

  • SEMARNAT (Secretaría del Medio Ambiente Recursos Naturales y Pesca), INEGI (Instituto Nacional de Estadística, Geografía e Informática), UNAM (Instituto de Geografía, Universidad Autónoma Nacional de México) (2001) Inventario Nacional Forestal. Escala 1:250,000. Instituto de Geografía, UNAM, México

  • Shaffer ML (1981) Minimum population sizes for species conservation. BioScience 31:131–134

    Article  Google Scholar 

  • Shaffer ML (1987) Minimum viable populations: coping with uncertainty. In: Soule ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 69–86

    Chapter  Google Scholar 

  • SIMBAD-INEGI (2010) http://sc.inegi.org.mx/cobdem/contenido-arbol.jsp

  • Simberloff D (1998) Flagships, umbrellas and keystones: is single-species management pass in the landscape era? Biol Conserv 83(3):247–257

    Article  Google Scholar 

  • Skutsch M, Turnhout E, Vijge MJ, Herold M, Wits T Besten J, Balderas TA (2014) Options for a national framework for benefit distribution and their relation to community-based and national REDD + monitoring. Forests 5:1596–1617

  • Smith FA, Brown JH, Haskell JP et al (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat 163:672–691

    Article  PubMed  Google Scholar 

  • Snyder SA (1993) Haliaeetus leucocephalus. Fire Effects Information System. U.S. Department of Agriculture, Forest Service. http://www.fs.fed.us/database/feis/

  • Soberón J, Jiménez R, Golubov J, Koleff P (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160

    Article  Google Scholar 

  • Soulé ME (1985) What is conservation biology? BioScience 35(11):727–734

    Article  Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math Comput Simul 32:249–254

    Article  Google Scholar 

  • Sunquist M, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago

    Google Scholar 

  • Swets JA (1995) Signal detection theory and ROC analysis in psychology and diagnostics: collected papers. Lawrence Erlbaum Associates

  • Téllez O, Hutchinson MA, Nix HA, Jones P (2011) Desarrollo de coberturas digitales climáticas para México. In: Sánchez RG, Ballesteros BC, Pavón PN (eds) Cambio Climático: aproximaciones para el estudio de su efecto sobre la biodiversidad. Universidad Autónoma del Estado de Hidalgo, México, pp 15–112

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tobón W, Urquiza-Haas T, Ramos-Fernández G, Calixto-Pérez E, Alarcón J, Kolh M, Koleff P (2012) Prioridades para la conservación de los primates en México. In: Comisión Nacional para el conocimiento y Uso de la Biodiversidad-Asociación Mexicana de Primatología. A.C.-Comisión Nacional de Áreas Naturales Protegidas. Ciudad de México, México, pp 1–7

  • Urquiza-Haas T, Cantú C, Koleff P, Tobón W (2011) Caracterización de las ecorregiones terrestres: diversidad biológica, amenazas y conservación. In: Koleff P, Urquiza-Haas T (coords). Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México, pp 21–58

  • Urquiza-Haas T, Tobón W, Koleff P (2011) Sitios prioritarios para la conservación de mamíferos terrestres: evaluación de los criterios de selección de indicadores. In: Koleff P, Urquiza-Haas T (coords). Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México, pp 131–149

  • USGS (United States Geological Survey) (2007) Shuttle radar topography mission (SRTM) 3-arc second ARTM Format Documentation. USGS/NASA. http://edc.usgs.gov/products/elevation/srtmbil.html. Accessed 3 December 2015

  • Velázquez A (2012) El contexto geográfico de los lagomorfos de México. Therya 3:223–238

    Article  Google Scholar 

  • Velázquez A, Bocco G, Torres A (2001) Turning scientific approaches into practical conservation actions: the case of Comunidad Indígena de Nuevo San Juan Parangaricutiro, México. Environ Manag 5:655–665

    Google Scholar 

  • Velázquez A, Mas JF, Palacio JL, Bocco G (2002) Land cover mapping to obtain a current profile of deforestation in México. Unasylva 210:37–40

    Google Scholar 

  • Velázquez A, Fregoso A, Bocco G, Cortés G (2003) The use of a landscape approach in Mexican forest indigenous communities to strengthening long term forest management. Interciencia 28(11):632–638

    Google Scholar 

  • Velázquez A, Cué-Bär EM, Larrazábal A, Sosa N, Villaseñor JL, McCall M, Ibarra-Manríquez G (2009) Building participatory landscape-based conservation alternatives: a case study of Michoacán, México. Appl Geog 29:513–526

    Article  Google Scholar 

  • Velázquez A, Mas JF, Bocco G, Palacio-Prieto JL (2010) Mapping land cover changes in Mexico, 1976–2000 and applications for guiding environmental management policy. Singap J Trop Geogr 31:152–162

    Article  Google Scholar 

  • Walker B, Holling CS, Carpenter CR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9:5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Velazquez.

Additional information

Communicated by Daniel Sanchez Mata.

This article belongs to the Topical Collection: Biodiversity protection and reserves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Soto, C., Velazquez, A., Monroy-Vilchis, O. et al. Joint ecological, geographical and cultural approach to identify territories of opportunity for large vertebrates conservation in Mexico. Biodivers Conserv 26, 1899–1918 (2017). https://doi.org/10.1007/s10531-017-1335-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1335-7

Keywords

Navigation