Skip to main content

Negligence in the Atlantic forest, northern Brazil: a case study of an endangered orchid

Abstract

Currently, many Brazilian orchids are threatened with extinction resulting from habitat loss and intense harvesting pressure stemming from their value as ornamental plants. Therefore, the genetic diversity in remaining populations is fundamental to the survival of these species in natural environments. In order to inform conservation strategies, this study evaluated the genetic diversity and structure of Cattleya granulosa populations. The sample consisted of 151 individuals from 12 populations in the Atlantic Forest, northeastern Brazil, evaluated using 91 ISSR markers. Genetic variability was assessed through molecular variance, diversity indexes, clusters of genotypes through Bayesian analysis, and tests for genetic bottlenecks. From all polymorphic loci, genetic diversity (HE) varied between 0.210 and 0.321 and the Shannon index ranged from 0.323 and 0.472. Significant genetic differentiation between populations (ΦST = 0.391; P < 0.0001) resulted in the division of the populations into five groups based on the log-likelihood Bayesian analysis. We found significant positive correlation between geographical and genetic distances between populations (r = 0.794; P = 0.017), indicating isolation by distance. Patterns of allelic diversity within populations suggest the occurrence of bottlenecks in most C. granulosa populations (n = 8). Therefore, in order to maintain the genetic diversity of the species, the conservation of spatially distant groups is necessary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  2. Ávila-Diaz I, Oyama K (2007) Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). Am J Bot 94(2):184–193

    Article  PubMed  Google Scholar 

  3. Barbosa AR, Silva-Pereira V, Borba EL (2013) High genetic variability in self-incompatible myophilous Octomeria (Orchidaceae, Pleurothallidinae) species. Braz J Bot 36(3):179–187

    Article  Google Scholar 

  4. Benner MS, Braunstein MD, Weisberg MU (1995) Detection of DNA polymorphisms within the genus Cattleya (Orchidaceae). Plant Mol Biol Rep 13:147–155

    CAS  Article  Google Scholar 

  5. Borba EL, Braga PIS (2003) Reproductive biology of Pseudolaelia corcovadensis Porto & Brade (Orchidaceae): melittophyly and selfcompatibility in a basal Laeliinae. Braz J Bot 26(4):541–549

    Article  Google Scholar 

  6. Borba EL, Felix JM, Solferini VN, Semir J (2001) Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. Am J Bot 88:419–428

    CAS  Article  PubMed  Google Scholar 

  7. Borba EL, Funch RR, Ribeiro PL, Smidt EC, Silva-Pereira V (2007) Demography, and genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae) in the Chapada Diamantina, Brazil. Plant Syst Evol 267:129–146

    Article  Google Scholar 

  8. Brandão MM, Vieira FA, Nazareno AG, Carvalho D (2015) Genetic diversity of neotropical tree Myrcia splendens (Myrtaceae) in a fragment-corridor system in the Atlantic rainforest. Flora 216:35–41

    Article  Google Scholar 

  9. Camara-Neto C, Chaves-Camara I, Medeiros SC, Braga MRA (2007) Rescuing Cattleya granulosa Lindley in the wild. Lankesteriana 7(2):243–246

    Google Scholar 

  10. Case MA, Mlodozeniec HT, Wallace LE, Weldy TW (1998) Conservation genetics and taxonomic status of the rare Kentucky lady’s slipper: cypripedium kentuckiense (Orchidaceae). Am J Bot 85:1779–1786

    CAS  Article  PubMed  Google Scholar 

  11. Chase MW, Cameron KM, Barrett R, Freudenstein JV (2003) DNA data and Orchidaceae systematics: a new phylogenic classification. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History, Kota Kinabalum, pp 69–90

    Google Scholar 

  12. Chung MY (2009) Lack of allozyme diversity in populations of the rare, endangered terrestrial orchids Tipularia japonica and Epipactis papillosa in Korea. Plant Syst Evol 278:203–209

    CAS  Article  Google Scholar 

  13. Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Google Scholar 

  14. Costa RA (2010) Biologia floral e sistema reprodutivo de Cattleya granulosa Lindl., uma Orchidaceae ameaçada e endêmica do Nordeste do Brasil, p 62. Dissertation—Master Degree in Vegetal Biology, Universidade Federal de Pernambuco, Recife, PE

  15. Cota LG, Vieira FA, Melo-Júnior AF, Brandão MM, Santana KNO, Guedes ML, Oliveira DA (2011) Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State. Genet Mol Res 10:2172–2180

    CAS  Article  PubMed  Google Scholar 

  16. Couvet D (2002) Deleterious effects of restricted gene flow in fragmented populations. Conserv Biol 16:369–376

    Article  Google Scholar 

  17. Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A (2003) Fine-scale phylogeographical analysis of Mediterranean Anacamptis palustris (Orchidaceae) populations based on chloroplast minisatellite and microsatellite variation. Mol Ecol 12:2783–2792

    CAS  Article  PubMed  Google Scholar 

  18. Cruz DT, Borba EL, van den Berg C (2003) O gênero Cattleya no estado da Bahia. Sitientibus 3(1–2):28–36

    Google Scholar 

  19. Cruz DT, Selbah-Schnadelbach A, Lambert SM, Ribeiro PL, Borba EL (2011) Genetic and morphological variability in Cattleya elongata Barb. Rodr. (Orchidaceae), endemic to the campo rupestre vegetation in northeastern Brazil. Plant Syst Evol 294:87–98

    Article  Google Scholar 

  20. Doyle JJ, Doyle JL (1987) A rapid DNA isolation method for small quantities of fresh tissues. Phytochem Bull Bot Soc Am 19:11–15

    Google Scholar 

  21. Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359e361

    Article  Google Scholar 

  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  Article  PubMed  Google Scholar 

  23. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  24. Fajardo CG, Vieira FA, Molina WF (2014) Interspecific genetic analysis of orchids in Brazil using molecular markers. Plant Syst Evol 300:1825–1832

    CAS  Article  Google Scholar 

  25. George S, Sharma J, Yadon VL (2009) Genetic diversity of the endangered and narrow endemic Piperia Yadonii (Orchidaceae) assessed with ISSR polymorphisms. Am J Bot 96(11):2022–2030

    CAS  Article  PubMed  Google Scholar 

  26. Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528

    CAS  Article  PubMed  Google Scholar 

  27. Gustafsson S (2000) Patterns of genetic variation in Gymnadenia conopsea, the fragrant orchid. Mol Ecol 9:1863–1872

    CAS  Article  PubMed  Google Scholar 

  28. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298

    Article  Google Scholar 

  29. Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  30. Jump AS, Penuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103(21):8096–8100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kimura M, Otha T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite populations. Proc Natl Acad Sci USA 75:2868–2872

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kingston N, Waldren S, Smyth N (2004) Conservation genetics and ecology of Angiopteris chauliodonta Copel. (Marattiaceae), a critically endangered fern from pitcairn Island, South Central Pacific Ocean. Biol Conserv 117:309–319

    Article  Google Scholar 

  34. Lee S-L, Ng KKS, Saw L-G, Norwati A, Salwana MHS, Lee C-T, Norwati M (2002) Population genetics of Intsia palembanica (Leguminosae) and genetic conservation of virgin jungle reserves in Peninsular Malaysia. Am J Bot 89(3):447–459

    Article  PubMed  Google Scholar 

  35. Li A, Ge S (2006) Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst Evol 258:251–260

    CAS  Article  Google Scholar 

  36. Li A, Luo Y, Ge S (2002) Premilary study on conservation genetics of an endangered orchid (Paphiopedilum micranthum) from southwestern China. Biochem Genet 40:195–201

    CAS  Article  PubMed  Google Scholar 

  37. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic-structure in plant-populations. Annu Rev Ecol Evol Syst 15:65–95

    Article  Google Scholar 

  38. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89(3):238–247

    CAS  Article  PubMed  Google Scholar 

  39. Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  40. McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. Gleneden Beach, Oregon

    Google Scholar 

  41. McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  42. Ministério do Meio Ambiente (2008) Instrução normativa n° 6 de 23 de setembro de 2008. http://www.mma.gov.br/estruturas/179/_arquivos/179_05122008033615.pdf. Accessed 07 July 2016

  43. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  44. Niknejad A, Kadir MA, Kadzimin SB, Abdullah NAP, Sorkheh K (2009) Molecular characterization and phylogenetic relationships among and within species of Phalaenopsis (Epidendroideae: Orchidacheae) base on RAPD analysis. Afr J Biotechnol 8:5225–5240

    CAS  Google Scholar 

  45. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    CAS  Article  PubMed  Google Scholar 

  46. Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3(2):93–114

    Article  Google Scholar 

  47. Oliveira DA, Melo-Júnior AF, Brandão MM, Rodrigues LA, Menezes EV, Ferreira PRB (2012) Genetic diversity in populations of Acrocomia aculeata (Arecaceae) in the northern region of Minas Gerais, Brazil. Genet Mol Res 11(1):531–538

    CAS  Article  PubMed  Google Scholar 

  48. Pansarin ER, Amaral MCE (2008) Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization? Plant Biol 10:211–219

    CAS  Article  PubMed  Google Scholar 

  49. Parab GV, Krishnan S (2008) Assessment of genetic variation among populations of Rhynchostylis retusa, an epiphytic orchid from Goa, India using ISSR and RAPD markers. Indian J Biotechnol 7:313–319

    CAS  Google Scholar 

  50. Parab GV, Krishnan S, Janarthanam MK, Sivaprakash KR, Parida A (2008) ISSR and RAPD markers assessed genetic variation of Aerides maculosum—an epiphytic orchid from Goa, India. J Plant Biochem Biotechnol 17(1):107–109

    CAS  Article  Google Scholar 

  51. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  52. Pinheiro LR, Rabbani ARC, Silva AVC, Lédo AS, Pereira KLG, Diniz LEC (2012) Genetic diversity and population structure in the Brazilian Cattleya labiata (Orchidaceae) using RAPD and ISSR markers. Plant Syst Evol 298:1–11

    Article  Google Scholar 

  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Qian X, Wang C-X, Tian M (2013) Genetic diversity and population differentiation of Calanthe tsoongiana, a rare and endemic orchid in China. Int J Mol Sci 14(10):20399–20413

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rodrigues JF, van den Berg C, Abreu AG, Novello M, Veasey EA, Oliveira GCX, Koehler S (2015) Species delimitation of Cattleya coccinea and C. mantiqueirae (Orchidaceae): insights from phylogenetic and population genetics analyses. Plant Syst Evol 301:1345–1359

    Article  Google Scholar 

  56. Sharmaa IK, Jonesa DL, Younga AG, French CJ (2001) Genetic diversity and phylogenetic relatedness among six endemic Pterostylis species (Orchidaceae; series Grandiflorae) of Western Australia, as revealed by allozyme polymorphisms. Biochem Syst Ecol 29:697–710

    Article  Google Scholar 

  57. Silva-Pereira V, Smidt EC, Borba EL (2007) Isolation mechanisms between two sympatric Sophronitis (Orchidaceae) species endemic to Northeastern Brazil. Plant Syst Evol 269(3–4):171–182

    Article  Google Scholar 

  58. Soto Arenas MA, Solano Gómez R, Hágsater E (2007) Risk of extinction and patterns of diversity loss in Mexican orchids. Lankesteriana 7:114–121

    Google Scholar 

  59. Sun M, Wong KC (2001) Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. Am J Bot 88:2180–2188

    CAS  Article  PubMed  Google Scholar 

  60. Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  61. Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Philos Trans R Soc Lond B Biol Sci 360(1459):1367–1378

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Trapnell DW, Hamrick JL (2005) Mating patterns and gene flow in the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 14:75–84

    CAS  Article  PubMed  Google Scholar 

  63. Trapnell DW, Hamrick JL, Nason JD (2004) Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 13:1111–1118

    CAS  Article  PubMed  Google Scholar 

  64. Trapnell DW, Hamrick JL, Ishibashi CD, Kartzinel TR (2013) Genetic inference of epiphytic orchid colonization; it may only take one. Mol Ecol 22:3680–3692

    Article  PubMed  Google Scholar 

  65. Ueno S, Rodrigues JF, Alves-PereiraA Pansarin ER, Veasey EA (2015) Genetic variability within and among populations of an invasive, exotic orchid. AoB Plants 7:plv077. doi:10.1093/aobpla/plv077

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vale Á, Rojas D, Álvarez JC, Navarro L (2013) Distribution, habitat disturbance and pollination of the endangered orchid Broughtonia cubensis (Epidendrae: Laeliinae). Bot J Linn Soc 172(3):345–357

    Article  Google Scholar 

  67. Van den Berg C (2014) Reaching a compromise between conflicting nuclear and plastid phylogenetic trees: a new classification for the genus Cattleya (Epidendreae; Epidendroideae; Orchidaceae). Phytotaxa 186(2):075–086

    Article  Google Scholar 

  68. Van den Berg C, Higgins W, Dressler R, Whitten W, Soto-Arenas M, Chase MA (2009) Phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences. Ann Bot 104:417–430

    Article  PubMed  PubMed Central  Google Scholar 

  69. Velozo HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal. IBGE, Rio de Janeiro

    Google Scholar 

  70. Vieira FA, Carvalho D (2008) Genetic structure of an insect-pollinated and bird-dispersed tropical tree in vegetation fragments and corridors: implications for conservation. Biodivers Conserv 17:2305–2321

    Article  Google Scholar 

  71. Wallace LE (2003) Molecular evidence for allopolyploid speciation and recurrent origins in Platanthera huronensis (Orchidaceae). Int J Plant Sci 164:907–916

    CAS  Article  Google Scholar 

  72. Wallace LE (2004) A comparison of genetic variation and structure in the allopolyploid Platanthera huronensis and its diploid progenitors, Platanthera aquilonis and Platanthera dilatata (Orchidaceae). Can J Bot 82:244–252

    Article  Google Scholar 

  73. Wright S (1951) The genetical structure of populations. Ann Eugen 15(4):313–354

    Google Scholar 

  74. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton

    Google Scholar 

  75. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing a doctoral fellowship to C.G. Fajardo. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). We would like to acknowledge J. Felismino, R. Costa, E. Mendonça, J. G. Jardins, Julião from the Reserva Biológica Guaribas, and V. G. Pinto from Cristal Mineração do Brasil LTDA for providing research facilities for field work. We thank Dr. Evelyn Nimmo for editing the English of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fábio de Almeida Vieira.

Additional information

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Estimates of Nei’s genetic distance (1978), below the diagonal, and geographic distance (Km) above the diagonal, between the populations of Cattleya granulosa. The minimum and maximum values are shown in bold. (DOCX 28 kb)

Supplementary material 2

Principal component analysis of populations of C. granulosa based on the Nei’s genetic identity. tatistics (B). Populations are bounded by black vertical bar. (DOCX 55 kb)

Supplementary material 3

Plotting of the mean LnP(D) values from the Bayesian approach (full line) and Evanno’s ΔK (broken line). Error bars are standard deviations of LnP(D) values. (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fajardo, C.G., de Almeida Vieira, F., Felix, L.P. et al. Negligence in the Atlantic forest, northern Brazil: a case study of an endangered orchid. Biodivers Conserv 26, 1047–1063 (2017). https://doi.org/10.1007/s10531-016-1285-5

Download citation

Keywords

  • Orchidaceae
  • Genetic diversity
  • Vulnerable species
  • Genetic bottleneck