Skip to main content

Advertisement

Log in

Integrating species distribution modelling into decision-making to inform conservation actions

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Species distribution models (SDMs) have been widely tagged as valuable tools in a variety of conservation assessments to address pressing conservation problems. However, these solutions could be hampered by difficulties to overcome the knowledge-action boundary between conservation and modelling practice. These difficulties have been well typified in the ecological modelling sphere, but a specific conceptual framework on how to bridge this gap is still lacking. This work reports successful examples on how to use SDMs to identify the most favourable habitats for implementing conservation management actions. We use these examples to discuss about the three main topics that deserve special attention to help enhance information flow between practitioners and modellers: the decision context, the modelling framework and the spatial products. Finally, we suggest some practical solutions to improve applications of effective conservation action on the ground. We emphasize the importance of matching modelling goals and decision targets by a close collaboration of modellers with decision makers and species experts. Moreover, we highlight the key role of clear and useful spatial products to provide relevant and timely feedback to increase understanding and promote utilisation by conservation practitioners, and to inform and involve targeted audiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addison PFE, Rumpff L, Bau SS et al (2013) Practical solutions for making models indispensable in conservation decision-making. Divers Distrib 19:490–502. doi:10.1111/ddi.12054

    Article  Google Scholar 

  • Anderson RP, Gonzalez I Jr (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Anderson RP, Martinez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179

    Article  Google Scholar 

  • Angelieri CCS, Adams-Hosking C, de Barroz KMPM et al (2016) Using species distribution models to predict potential landscape restoration effects on puma conservation. PLoS ONE 11:1–18. doi:10.1371/journal.pone.0145232

    Article  CAS  Google Scholar 

  • Arcos JM, Bécares J, Rodríguez B, Ruiz A (2009) Áreas Importantes para la conservación de las aves marinas en España. LIFE04NAT/ES/000049-Sociedad Española de Ornitologia (SEO/BirdLife), Madrid

  • Arcos JM, Bécares J, Villero D et al (2012) Assessing the location and stability of foraging hotspots for pelagic seabirds: an approach to identify marine Important Bird Areas (IBAs) in Spain. Biol Conserv. doi:10.1016/j.biocon.2011.12.011

    Google Scholar 

  • Arts K, van der Wal R, Adams WM (2015) Digital technology and the conservation of nature. Ambio 44:661–673. doi:10.1007/s13280-015-0705-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339. doi:10.2307/2404755

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423. doi:10.1111/j.1365-2664.2006.01136.x

    Article  Google Scholar 

  • Beale CM, Lennon JJ (2012) Incorporating uncertainty in predictive species distribution modelling. Philos Trans R Soc B Biol Sci 367:247–258. doi:10.1098/rstb.2011.0178

    Article  Google Scholar 

  • Bertolero A (2008) Cens i distribució de la tortuga mediterrània a la Serra de l’Albera. Avaluació de la situació durant el 2007. Barcelona

  • Bota G, Brotons L, Giralt D, Pla M (2008) Informe científico sobre la identificación de zonas de hàbitat adecuado para la carraca, la terrera común, la calandria común y el sisón en el ámbito de las IBAs 142 (Secans de Lleida) y 144 (Cogul-Alfés). Informe inèdit, Centre Tecnológic Forestal de Catalunya

    Google Scholar 

  • Boyce M, Vernier P, Nielsen S, Schmiegelow F (2002) Evaluating resource selection functions. Ecol Modell 157:281–300. doi:10.1016/S0304-3800(02)00200-4

    Article  Google Scholar 

  • Brotons L (2014) Species distribution models and impact factor growth in environmental journals: methodological fashion or the attraction of global change science. PLoS ONE 9:e111996. doi:10.1371/journal.pone.0111996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brotons L, Herrando S, Pla M (2007) Updating bird species distribution at large spatial scales: applications of habitat modelling to data from long-term monitoring programs. Divers Distrib 13:276–288. doi:10.1111/j.1472-4642.2007.00339.x

    Article  Google Scholar 

  • Campbell CA, Lefroy EC, Caddy-Retalic S et al (2015) Designing environmental research for impact. Sci Total Environ 534:4–13. doi:10.1016/j.scitotenv.2014.11.089

    Article  CAS  PubMed  Google Scholar 

  • Carwardine J, Wilson KA, Watts M et al (2008) Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority setting. PLoS ONE 3:e2586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cash DW, Clark WC, Alcock F et al (2003) Knowledge systems for sustainable development. Proc Natl Acad Sci 100:8086–8091. doi:10.1073/pnas.1231332100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman AD (2005) Principles and methods of data cleaning—primary species and species-occurrence data, version 1.0. Rep. Glob. Biodivers. Inf. Facil. 77

  • Clavero M, Hermoso V (2015) Historical data to plan the recovery of the European eel. J Appl Ecol 52:960–968. doi:10.1111/1365-2664.12446

    Article  Google Scholar 

  • Cook CN, Hockings M, Carter RWB (2010) Conservation in the dark ? The information used to support management decisions. Front Ecol Environ 8:181–186. doi:10.1890/090020

    Article  Google Scholar 

  • Cook CN, Mascia MB, Schwartz MW et al (2013) Achieving conservation science that bridges the knowledge-action boundary. Conserv Biol 27:669–678. doi:10.1111/cobi.12050

    Article  PubMed  PubMed Central  Google Scholar 

  • de Siqueira MF, Durigan G, de Júnior Marco P, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32. doi:10.1016/j.jnc.2008.11.001

    Article  Google Scholar 

  • DMAH (2007) Ordre MAH/279/2007, de 24 de juliol, per la qual s’aproven les bases reguladores de les subvencions destinades a compatibilitzar les activitats apícoles amb la conservació de l’abellerol al territori de Catalunya i s’obre la convocatòria per a l’any 2007. DOGC 4938:26160–26165

    Google Scholar 

  • Driver A, Cowling RM, Maze K (2003) Planning for living landscapes—perspectives and lessons from South Africa. Center for Applied Biodiversity Science at Conservation International, Washington, DC

    Google Scholar 

  • Edrén SMC, Wisz MS, Teilmann J et al (2010) Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography (Cop) 33:698–708. doi:10.1111/j.1600-0587.2009.05901.x

    Article  Google Scholar 

  • Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13:265–275. doi:10.1111/j.1472-4642.2007.00340.x=

    Article  Google Scholar 

  • Elith J, Leathwick J (2009) Spatial conservation prioritization: quantitative methods and computational tools. In: Moilanen A, Wilson KA, Possingham H (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University, Oxford, pp 70–93

    Google Scholar 

  • Elith JH, Graham CP, Anderson R et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Estrada J, Pedrocchi V, Brotons L, Herrando S (2004) Catalan Breeding Bird Atlas (1999–2002). Lynx ed. & Institut Català d’Ornitologia, Bellaterra

  • Fajardo J, Lessmann J, Bonaccorso E et al (2014) Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9:1–23. doi:10.1371/journal.pone.0114367

    Article  CAS  Google Scholar 

  • Fei S, Liang L, Paillet FL et al (2012) Modelling chestnut biogeography for American chestnut restoration. Divers Distrib 18:754–768. doi:10.1111/j.1472-4642.2012.00886.x

    Article  Google Scholar 

  • Ferrier S, Watson G, Pearce J et al (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales I. Species-level modelling. Biodivers Conserv 11:2275–2307

    Article  Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485. doi:10.1111/j.1472-4642.2007.00377.x

    Article  Google Scholar 

  • Ficetola GF, Maiorano L, Falcucci A et al (2010) Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Chang Biol 16:528–537. doi:10.1111/j.1365-2486.2009.01957.x

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence: absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New York

    Google Scholar 

  • Gastón A, García-Viñas JI (2013) Evaluating the predictive performance of stacked species distribution models applied to plant species selection in ecological restoration. Ecol Modell 263:103–108. doi:10.1016/j.ecolmodel.2013.04.020

    Article  Google Scholar 

  • Grantham HS, Wilson KA, Moilanen A et al (2009) Delaying conservation actions for improved knowledge: how long should we wait? Ecol Lett 12:293–301. doi:10.1111/j.1461-0248.2009.01287.x

    Article  PubMed  Google Scholar 

  • Gregory R, Long G (2009) Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal 29:518–532

    Article  PubMed  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, Elith J et al (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24:276–292. doi:10.1111/geb.12268

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Guisan A, Broennimann O, Engler R et al (2006) Using Niche-Based models to improve the sampling of rare species. Conserv Biol 20:501–511. doi:10.1111/j.1523-1739.2006.00354.x

    Article  PubMed  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. doi:10.1111/ele.12189

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermoso V, Kennard MJ, Linke S (2013) Data acquisition for conservation assessments: is the effort worth It? PLoS ONE 8:e59662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermoso V, Kennard MJ, Linke S (2015) Assessing the risks and opportunities of presence-only data for conservation planning. J Biogeogr 42:218–228. doi:10.1111/jbi.12393

    Article  Google Scholar 

  • Hesterberg T, Chambers JM, Hastie TJ (1993) Statistical Models in S. Chapman and Hall, London

    Google Scholar 

  • Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Modell 157:331–341. doi:10.1016/S0304-3800(02)00203-X

    Article  Google Scholar 

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:e157. doi:10.1371/journal.pbio.0050157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jetz W, McPherson JM, Guralnick RP (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol Evol 27:151–159. doi:10.1016/j.tree.2011.09.007

    Article  PubMed  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J et al (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797. doi:10.1007/s10530-011-9963-4

    Article  Google Scholar 

  • Knight AT, Cowling RM, Campbell BM (2006) An operational model for implementing conservation action. Conserv Biol 20:408–419

    Article  PubMed  Google Scholar 

  • Knight AT, Cowling RM, Rouget M et al (2008) Knowing but not doing: selecting priority conservation areas and the research-implementation gap. Conserv Biol 22:610–617. doi:10.1111/j.1523-1739.2008.00914.x

    Article  PubMed  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379. doi:10.1111/ddi.12096

    Article  Google Scholar 

  • Laurance WF, Koster H, Grooten M et al (2012) Making conservation research more relevant for conservation practitioners. Biol Conserv 153:164–168. doi:10.1016/j.biocon.2012.05.012

    Article  Google Scholar 

  • Legendre P, Legendre L (1988) Numerical Ecology, 2nd edn. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop) 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi:10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Longepierre S, Hailey A, Grenot C (2001) Home range area in the tortoise Testudo hermanni in relation to habitat complexity: implications for conservation of biodiversity. Biodivers Conserv 10:1131–1140

    Article  Google Scholar 

  • Ludwig D, Mangel M, Haddad B (2001) Ecology, conservation and public policy. Annu Rev Ecol Syst 1:481–517

    Article  Google Scholar 

  • MacDonald DW, Collins NM, Wrangham R (2007) Principles, practice and priorities: the quest of “alignment”. In: MacDonald DW, Service K (eds) Key topics in conservation biology. Blackwell Publishing Ltd, Malden, pp 271–290

    Google Scholar 

  • Marcer A, Sáez L, Molowny-horas R et al (2012) Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol Conserv 166:221–230. doi:10.1016/j.biocon.2013.07.001

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi:10.1038/35012251

    Article  CAS  PubMed  Google Scholar 

  • Martin Y, Van Dyck H, Dendoncker N, Titeux N (2013) Testing instead of assuming the importance of land use change scenarios to model species distributions under climate change. Glob Ecol Biogeogr 22:1204–1216. doi:10.1111/geb.12087

    Article  Google Scholar 

  • Mcdonald-Madden E, Bode M, Game ET et al (2008) The need for speed: informed land acquisitions for conservation in a dynamic property market. Ecol Lett 11:1169–1177. doi:10.1111/j.1461-0248.2008.01226.x

    PubMed  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species distributions: what it does, and why inputs and setting matter. Ecography (Cop) 36:1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Norton BG (1998) Improving ecological communication: the role of ecologists in environmental policy formation. Ecol Appl 8:350–364. doi:10.1890/1051-0761

    Article  Google Scholar 

  • Pawar S, Koo M, Kelley C et al (2007) Conservation assessment and prioritization of areas in Northeast India: priorities for amphibians and reptiles. Biol Conserv 136:346–361. doi:10.1016/j.biocon.2006.12.012

    Article  Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412. doi:10.1111/j.1365-2664.2005.01112.x

    Article  Google Scholar 

  • Pearce J, Ferrier S, Scotts D (2001a) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. J Environ Manage 62:171–184. doi:10.1006/jema.2001.0425

    Article  CAS  PubMed  Google Scholar 

  • Pearce JL, Cherry KMD et al (2001b) Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution. J Appl Ecol 38:412–424. doi:10.1046/j.1365-2664.2001.00608.x

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M et al (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. doi:10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Pfeffer J, Sutton RI (1999) Knowing “what” to do is not enough: turning knowledge into action. Calif Manage Rev 42:83–108. doi:10.2307/41166020

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop) 31:161–175. doi:10.1111/j.2007.0906-7590.05203.x

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Twenty-first Int Conf Mach Learn–ICML’04 83. doi: 10.1145/1015330.1015412

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH (1999) The gaps between theory and practice in selecting nature reserves. Conserv Biol 13:484–492. doi:10.1046/j.1523-1739.1999.97428.x

    Article  Google Scholar 

  • Pullin AS (2002) Conservation Biology. Cambridge University Press, New York

    Book  Google Scholar 

  • Pullin AS, Knight TM, Stone DA, Charman K (2004) Do conservation managers use scientific evidence to support their decision-making? Biol Conserv 119:245–252. doi:10.1016/j.biocon.2003.11.007

    Article  Google Scholar 

  • Raxworthy CJ, Martinez-Meyer E, Horning N et al (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. doi:10.1038/nature02205

    Article  CAS  PubMed  Google Scholar 

  • Reddy S, Dávalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727. doi:10.1046/j.1365-2699.2003.00946.x

    Article  Google Scholar 

  • Regos A, D’Amen M, Titeux N et al (2016) Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96. doi:10.1111/ddi.12375

    Article  Google Scholar 

  • Reyers B, Rouget M, Jonas Z et al (2007) Developing products for conservation decision-making: lessons from a spatial biodiversity assessment for South Africa. Divers Distrib 13:608–619. doi:10.1111/j.1472-4642.2007.00379.x

    Article  Google Scholar 

  • Robertson A, Jarvis AM (1995) Can bird atlas data be used to estimate population size? A case study using namibian endemics. Biol Conserv 71:87–95

    Article  Google Scholar 

  • Rodriguez JP, Brotons L, Bustamante J et al (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251. doi:10.1111/j.1472-4642.2007.00356.x

    Article  Google Scholar 

  • Rondinini C, Wilson Ka, Boitani L et al (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol Lett 9:1136–1145. doi:10.1111/j.1461-0248.2006.00970.x

    Article  PubMed  Google Scholar 

  • Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2007) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol Invasions 11:1017–1031. doi:10.1007/s10530-008-9313-3

    Article  Google Scholar 

  • Rousselet J, Imbert C-E, Dekri A et al (2013) Assessing species distribution using google street view: a pilot study with the pine processionary moth. PLoS ONE 8:e74918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runge CA, Tulloch AIT, Possingham HP et al (2016) Incorporating dynamic distributions into spatial prioritization. Divers Distrib 22:332–343. doi:10.1111/ddi.12395

    Article  Google Scholar 

  • Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Modell 90:229–244. doi:10.1016/0304-3800(95)00152-2

    Article  Google Scholar 

  • Salafsky N, Margoluis R, Redford K, Robinson JG (2002) Improving the practice of conservation: a conceptual framework and research agenda for conservation science. Conserv Biol 16:1469–1479

    Article  Google Scholar 

  • Schmolke A, Thorbek P, DeAngelis DL, Grimm V (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25:479–486. doi:10.1016/j.tree.2010.05.001

    Article  PubMed  Google Scholar 

  • Scholes RJ, Mace GM, Turner W et al (2008) Toward a global biodiversity observing system. Source Sci New Ser 321:1044–1045. doi:10.1126/science.1162055

    CAS  Google Scholar 

  • Shanmughavel P (2007) An overview on biodiversity information in databases. Bioinformation 1:367–369. doi:10.6026/97320630001367

    Article  PubMed  PubMed Central  Google Scholar 

  • Soberón JM (2004) Translating life’s diversity: can scientists and policymakers learn to communicate better? Environ Sci Policy Sustain Dev 46:10–20. doi:10.1080/00139150409604394

    Article  Google Scholar 

  • Starfield AM (1997) A pragmatic approach to modeling for wildlife management. J Wildl Manage 61:261–270. doi:10.2307/3802581

    Article  Google Scholar 

  • Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308. doi:10.1016/j.tree.2004.03.018

    Article  PubMed  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of Maxent species distribution models. PLoS ONE 8:e55158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theobald DM, Spies T, Kline J et al (2005) Ecological support for rural land-use planning. Ecol Appl 15:1906–1914

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Vallecillo S, Brotons L, Thuiller W (2009) Dangers of predicting bird species distributions in response to land-cover changes. Ecol Appl 19:538–549

    Article  PubMed  Google Scholar 

  • Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv Biol 17:1601–1611. doi:10.1111/j.1523-1739.2003.00359.x

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Wetzel FT, Saarenmaa H, Regan E et al (2015) The roles and contributions of Biodiversity Observation Networks (BONs) in better tracking progress to 2020 biodiversity targets: a European case study. Biodiversity 16(2–3):137–149. doi:10.1080/14888386.2015.1075902

    Article  Google Scholar 

  • Wieczorek J, Bloom D, Guralnick R et al (2012) Darwin core: an evolving community-developed biodiversity data standard. PLoS ONE. doi:10.1371/journal.pone.0029715

    Google Scholar 

  • Wintle BA, Elith J, Potts JM (2005) Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecol 30:719–738. doi:10.1111/j.1442-9993.2005.01514.x

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J et al (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773. doi:10.1111/j.1472-4642.2008.00482.x

    Article  Google Scholar 

  • Yackulic CB, Chandler R, Zipkin EF et al (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol Evol 4:236–243. doi:10.1111/2041-210x.12004

    Article  Google Scholar 

Download references

Acknowledgements

CARTOBIO improvements were thanks to the contributions of people from the Catalan Government (I. Afonso, A. Bertolero, J. Bonfil, J. Canut, R. Casanovas, D. García, E. Guinart, S. Lleonart, J. M. Olmo, M. Pomarol, A. Tarrago, S. Palazón and T. Torrell), the Catalan Ornithological Institute (M. Anton, R. Aymí and S. Herrando), the Granollers Museum of Natural Sciences (A. Arrizabalaga, C. Flaquer, X. Puig and I. Torre), the “Grup d’Estudis i Proteccio de la Tortuga” (J. Budó, X. Capalleras and A. Vilardell), the University of Girona (P. Pons and N. Roura-Pascual), and the Forest Sciences Centre of Catalonia (G. Bota, J. Camprodon, A. Franquesa, A. Gil-Tena, D. Giralt, D. Guixé, L. Juarez, N. Pou, F. Sardà). Thanks to V. Hermoso to read and improve the manuscript, and C. Polce for generous and constructive review and good ideas. This work was partially funded from FORESTCAST (CGL2014-59742) project, Granted by the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dani Villero.

Additional information

Communicated by P. Ponel.

This article belongs to the Topical Collection: Biodiversity protection and reserves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villero, D., Pla, M., Camps, D. et al. Integrating species distribution modelling into decision-making to inform conservation actions. Biodivers Conserv 26, 251–271 (2017). https://doi.org/10.1007/s10531-016-1243-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1243-2

Keywords

Navigation