Biodiversity and Conservation

, Volume 26, Issue 1, pp 133–150 | Cite as

Fallow management for steppe bird conservation: the impact of cultural practices on vegetation structure and food resources

  • Irene Robleño
  • Gerard Bota
  • David Giralt
  • Jordi Recasens
Original Paper

Abstract

The potential of fallow lands to favor farmland bird conservation is widely recognized. Since fallows provide key resources for birds within the agricultural matrix, such as nesting sites, shelter and forage, complete understanding of the effect of field-management strategies on vegetation structure and food is essential to fulfill bird requirements and improve habitat management. In this study we experimentally compare the most common field practices (ploughing, shredding, herbicide application and cover cropping) on fallow lands by assessing the resources they provide for birds in terms of vegetation structure and food resources (leaf and seed availability), as well as the economic costs of their implementation. Fallow management treatments are ranked for six target species in a lowland area of the north-eastern Iberian Peninsula, according to the available information on their requirements. The different agronomic practices offer various quantities and types of resources, highlighting the importance of fallow management in bird conservation. Shredding and early herbicide application (February) are estimated to be good practices for Little Bustard (Tetrax tetrax) and Calandra Lark (Melanocorypha calandra), providing both favorable habitat and foraging conditions, while being economical. Meanwhile, superficial tillage in spring is found to be optimum for the rest of the species tested, despite being among the poorest food providers. Alternating patches of the best treatments would improve the effectiveness of agri-environmental schemes by maximizing the harboring habitat for the endangered species.

Keywords

Non-cropped land Habitat suitability Farmland birds conservation Field practices Agri-environmental schemes 

Supplementary material

10531_2016_1230_MOESM1_ESM.docx (492 kb)
Supplementary material 1 (DOCX 492 kb)
10531_2016_1230_MOESM2_ESM.docx (4.8 mb)
Supplementary material 2 (DOCX 4920 kb)

References

  1. Baraibar B, Westerman PR, Carrión E, Recasens J (2009) Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. J Appl Ecol 46:380–387. doi:10.1111/j.1365-2664.2009.01614.x CrossRefGoogle Scholar
  2. Bates D, Maechler M, Dai B (2008) lme4: linear mixed-effects models using S4 classes. Version 0.999375-27. http://lme4.r-forge.r-project.org/
  3. Benítez-López A, Viñuela J, Hervás I et al (2013) Modelling sandgrouse (Pterocles spp.) distributions and large-scale habitat requirements in Spain: implications for conservation. Environ Conserv 41:132–143. doi:10.1017/S0376892913000192 CrossRefGoogle Scholar
  4. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi:10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  5. Berenguer P, Santiveri F, Boixadera J, Lloveras J (2008) Fertilisation of irrigated maize with pig slurry combined with mineral nitrogen. Eur J Agron 28:635–645. doi:10.1016/j.eja.2008.01.010 CrossRefGoogle Scholar
  6. BirdLife International (2015) European red list of birds. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  7. Boatman ND, Brickle NW, Hart JD et al (2004) Evidence for the indirect effects of pesticides on farmland birds. Ibis 146:131–143CrossRefGoogle Scholar
  8. Bretagnolle V, Villers A, Denonfoux L et al (2011) Rapid recovery of a depleted population of Little Bustards Tetrax tetrax following provision of alfalfa through an agri-environment scheme. Ibis 153:4–13. doi:10.1111/j.1474-919X.2010.01092.x CrossRefGoogle Scholar
  9. Brotons L, Mañosa S, Estrada J (2004) Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodivers Conserv 13:1039–1058CrossRefGoogle Scholar
  10. Burfield I (2005) The conservation status of steppic birds in Europe. In: Bota G, Morales MB, Mañosa S, Camprodon J (eds) Ecology and conservation of steppe-land birds. Lynx Edicions & CentreTecnològic Forestal de Catalunya, Barcelona, pp 119–139Google Scholar
  11. Butler SJ, Gillings S (2004) Quantifying the effects of habitat structure on prey. Ibis 146:123–130CrossRefGoogle Scholar
  12. Butler SJ, Norris K (2013) Functional space and the population dynamics of birds in agro-ecosystems. Agric Ecosyst Environ 164:200–208. doi:10.1016/j.agee.2012.11.001 CrossRefGoogle Scholar
  13. Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384. doi:10.1126/science.1136607 CrossRefPubMedGoogle Scholar
  14. Butler SJ, Brooks D, Feber RE et al (2009) A cross-taxonomic index for quantifying the health of farmland biodiversity. J Appl Ecol 46:1154–1162. doi:10.1111/j.1365-2664.2009.01709.x Google Scholar
  15. Cardador L, De Cáceres M, Bota G et al (2014) A resource-based modelling framework to assess habitat suitability for steppe birds in semiarid mediterranean agricultural systems. PLoS One 9:1–14. doi:10.1371/journal.pone.0092790 CrossRefGoogle Scholar
  16. Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc Ecol 23:135–148. doi:10.1007/s10980-007-9150-2 CrossRefGoogle Scholar
  17. de Bolòs O, Vigo J, Masalles RM, Ninot JM (1993) Flora Manual Dels Paisos Catalans. Pòrtic 2nd Edicions, BarcelonaGoogle Scholar
  18. Delgado A, Moreira F (2000) Bird assemblages of an Iberian cereal steppe. Agric Ecosyst Environ 78:65–76. doi:10.1016/S0167-8809(99)00114-0 CrossRefGoogle Scholar
  19. Delgado MP, Morales MB, Traba J, Garcia De La Morena EL (2009) Determining the effects of habitat management and climate on the population trends of a declining steppe bird. Ibis 151:440–451. doi:10.1111/j.1474-919X.2009.00927.x CrossRefGoogle Scholar
  20. Di Giulio M, Edwards PJ, Meister E (2001) Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure. J Appl Ecol 38:310–319CrossRefGoogle Scholar
  21. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Biol Sci 268:25–29. doi:10.1098/rspb.2000.1325 CrossRefGoogle Scholar
  22. Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196. doi:10.1016/j.agee.2006.02.007 CrossRefGoogle Scholar
  23. Estrada J, Pedrocchi V, Brotons L, Herrando S (2004) The Catalan breeding bird atlas 1999–2002. Lynx Edicions, BarcelonaGoogle Scholar
  24. Fried G, Kazakou E, Gaba S (2012) Trajectories of weed communities explained by traits associated with species’ response to management practices. Agric Ecosyst Environ 158:147–155. doi:10.1016/j.agee.2012.06.005 CrossRefGoogle Scholar
  25. Gaba S, Fried G, Kazakou E et al (2013) Agroecological weed control using a functional approach: a review of cropping systems diversity. Agron Sustain Dev 34:103–119. doi:10.1007/s13593-013-0166-5 CrossRefGoogle Scholar
  26. Giannangeli L, Sanctis ADE, Manginelli R, Medina FM (2004) Seasonal variation of the diet of the Stone Curlew Burhinus oedicnemus distinctus at the island of La Palma, Canary Islands. Ardea 92:175–184Google Scholar
  27. Gillings S, Henderson IG, Morris AJ, Vickery JA (2010) Assessing the implications of the loss of set-aside for farmland birds. Ibis 152:713–723CrossRefGoogle Scholar
  28. Green RE, Tyler GA, Bowden CGR (2000) Habitat selection, ranging behaviour and diet of the stone curlew (Burhinus oedicnemus) in southern England. J Zool 250:161–183. doi:10.1017/S0952836900002028 CrossRefGoogle Scholar
  29. Guerrero I, Carmona CP, Morales MB et al (2014) Non-linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agric Ecosyst Environ 195:36–43. doi:10.1016/j.agee.2014.05.021 CrossRefGoogle Scholar
  30. Gulden RH, Sikkema PH, Hamill AS et al (2010) Glyphosate-resistant cropping systems in Ontario: multivariate and nominal trait-based weed community structure. Weed Sci 58:278–288. doi:10.1614/WS-D-09-00089.1 CrossRefGoogle Scholar
  31. Holland JM, Hutchison MAS, Smith B, Aebischer NJ (2006) A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann Appl Biol 148:49–71. doi:10.1111/j.1744-7348.2006.00039.x CrossRefGoogle Scholar
  32. Holland JM, Storkey J, Lutman PJW et al (2014) Utilisation of agri-environment scheme habitats to enhance invertebrate ecosystem service providers. Agric Ecosyst Environ 183:103–109. doi:10.1016/j.agee.2013.10.025 CrossRefGoogle Scholar
  33. Homem de Brito P (1996) Nest site selection by the stone curlew (Burhinus oedicnemus) in southern Portugal. In: Fernández J, Sanz-Zuasti J (eds) Conservation of steppe birds and their habitats. Valladolid, Junta de Castilla y León, pp 231–238Google Scholar
  34. Hoste-Danyłow A, Romanowski J, Żmihorski M (2010) Effects of management on invertebrates and birds in extensively used grassland of Poland. Agric Ecosyst Environ 139:129–133. doi:10.1016/j.agee.2010.07.009 CrossRefGoogle Scholar
  35. Huusela-Veistola E, Alanen EL, Hyvönen T, Kuussaari M (2011) Ecosystem service provision by establishing temporal habitats in agricultural environments. Biodivers Agric 7:24–26Google Scholar
  36. Hyvönen T, Huusela-Veistola E (2011) Impact of seed mixture and mowing on food abundance for farmland birds in set-asides. Agric Ecosyst Environ 143:20–27. doi:10.1016/j.agee.2011.04.008 CrossRefGoogle Scholar
  37. Izquierdo J, Recasens J, Fernández-Quintanilla C, Gill G (2003) Effects of crop and weed densities on the interactions between barley and Lolium rigidum in several Mediterranean locations. Agron Sustain Dev 25:529–536. doi:10.1051/agro Google Scholar
  38. Jiguet F, Jaulin S, Arroyo B (2002) Resource defence on exploded leks: do male little bustards, T. tetrax, control resources for females? Anim Behav 63:899–905. doi:10.1006/anbe.2001.1970 CrossRefGoogle Scholar
  39. Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Chang Biol 17:2905–2935. doi:10.1111/j.1365-2486.2011.02451.x CrossRefPubMedCentralGoogle Scholar
  40. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  41. Kleijn D, Baquero RA, Clough Y et al (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254. doi:10.1111/j.1461-0248.2005.00869.x CrossRefPubMedGoogle Scholar
  42. Kleijn D, Rundlöf M, Scheper J et al (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481. doi:10.1016/j.tree.2011.05.009 CrossRefPubMedGoogle Scholar
  43. Klotz S, Kühn I, Durka W (2002) BIOLFLOR-Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde, 38. Bundesamt für Naturschutz, BonnGoogle Scholar
  44. Kruess A, Tscharntke T (2002) Contrasting responses of plant and insect diversity to variation in grazing intensity. Biol Conserv 106:293–302CrossRefGoogle Scholar
  45. Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294–302CrossRefGoogle Scholar
  46. Llusia D, Oñate JJ (2005) Are the conservation requirements of pseudo-steppe birds adequately convered by Spanish agri-environmental schemes? An ex-ante assessment. Ardeola 52:31–42Google Scholar
  47. Marfil-Daza C, Pizarro M, Moreno-Rueda G (2013) Do hot spots of breeding birds serve as surrogate hot spots of wintering birds? An example from central Spain. Anim Conserv 16:60–68. doi:10.1111/j.1469-1795.2012.00569.x CrossRefGoogle Scholar
  48. Martín CA, Casas F, Mougeot F et al (2010) Seasonal variations in habitat preferences on Pin-tailed sandgrouse in agrarian pseudo-steppes. Ardeola 57:191–198Google Scholar
  49. Martín B, Martín CA, Palacín C et al (2014) Habitat preferences of sympatric sandgrouse during the breeding season in Spain: a multi-scale approach. Eur J Wildl Res 60:625–636. doi:10.1007/s10344-014-0826-z CrossRefGoogle Scholar
  50. Martínez C (1994) Habitat selection by the little bustard Tetrax tetrax in cultivated areas of Central Spain. Biol Conserv 67:125–128. doi:10.1016/0006-3207(94)90357-3 CrossRefGoogle Scholar
  51. McMahon BJ, Giralt D, Raurell M et al (2010) Identifying set-aside features for bird conservation and management in northeast Iberian pseudo-steppes. Bird Study 57:289–300. doi:10.1080/00063651003749680 CrossRefGoogle Scholar
  52. Morales MB, Traba J, Carriles E et al (2008) Sexual differences in microhabitat selection of breeding little bustards Tetrax tetrax: ecological segregation based on vegetation structure. Acta Oecol 34:345–353. doi:10.1016/j.actao.2008.06.009 CrossRefGoogle Scholar
  53. Moreira F (1999) Relationships between vegetation structure and breeding bird densities in fallow cereal steppes in Castro Verde, Portugal. Bird Study 46:309–318. doi:10.1080/00063659909461144 CrossRefGoogle Scholar
  54. Morgado R, Beja P, Reino L et al (2010) Calandra lark habitat selection: strong fragmentation effects in a grassland specialist. Acta Oecol 36:63–73. doi:10.1016/j.actao.2009.10.002 CrossRefGoogle Scholar
  55. Nicholls CI, Altieri MA (2012) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274. doi:10.1007/s13593-012-0092-y CrossRefGoogle Scholar
  56. Oñate JJ, Atance I, Bardají I, Llusia D (2007) Modelling the effects of alternative CAP policies for the Spanish high-nature value cereal-steppe farming systems. Agric Syst 94:247–260. doi:10.1016/j.agsy.2006.09.003 CrossRefGoogle Scholar
  57. Ponce C, Bravo C, Alonso JC (2014) Effects of agri-environmental schemes on farmland birds: do food availability measurements improve patterns obtained from simple habitat models? Ecol Evol 4:2834–2847. doi:10.1002/ece3.1125 CrossRefPubMedPubMedCentralGoogle Scholar
  58. R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  59. Royal Botanic Gardens Kew (2014) Seed information database (SID). Version 7.1. http://data.kew.org/data/sid. Accessed 10 Aug 2015
  60. Santos T, Suárez F (2005) Biogeography and population trends of Iberian steppe birds. In: Bota G, Morales MB, Mañosa S, Camprodon J (eds) Ecology and conservation of steppe-land birds. Lynx, Barcelona, pp 69–102Google Scholar
  61. Sanza MA, Traba J, Morales MB et al (2012) Effects of landscape, conspecifics and heterospecifics on habitat selection by breeding farmland birds: the case of the Calandra Lark (Melanocorypha calandra) and Corn Bunting (Emberiza calandra). J Ornithol 153:525–533. doi:10.1007/s10336-011-0773-3 CrossRefGoogle Scholar
  62. Silva JP (2010) Factors affecting the abundance of the little bustard Tetrax tetrax: Implications for conservation. PhD Thesis, University of Lisbon, Lisbon, PortugalGoogle Scholar
  63. Silva JP, Estanque B, Moreira F, Palmeirim JM (2013) Population density and use of grasslands by female Little Bustards during lek attendance, nesting and brood-rearing. J Ornithol 155:53–63. doi:10.1007/s10336-013-0986-8 CrossRefGoogle Scholar
  64. Sojneková M, Chytrý M (2015) From arable land to species-rich semi-natural grasslands: succession in abandoned fields in a dry region of central Europe. Ecol Eng 77:373–381. doi:10.1016/j.ecoleng.2015.01.042 CrossRefGoogle Scholar
  65. Stoate C, Boatman N, Borralho R et al (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–365. doi:10.1006/jema.2001.0473 CrossRefPubMedGoogle Scholar
  66. Storkey J, Brooks D, Haughton A et al (2013) Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. J Ecol 101:38–46. doi:10.1111/1365-2745.12020 CrossRefGoogle Scholar
  67. Suárez F, Martínez C, Herranz J, Yanes M (1997) Conservation status and farmland requirements on Pin-tailed Sandgrouse Pterocles alchata and Black-bellied Sandgrouse Pterocles orientalis in Spain. Biodivers Conserv 82:73–80. doi:10.1016/S0006-3207(97)00008-6 Google Scholar
  68. Suárez FS, Garza VG, Morales MBM (2002) Habitat use of two sibling species, the Short-toed Calandrella brachydactyla and the Lesser short-toed C. rufescens larks, in mainland Spain. Ardeola 49:259–272Google Scholar
  69. Suárez F, Hervás I, Herranz J (2009) Las alondras de España peninsular. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  70. Toivonen M, Herzon I, Helenius J (2013) Environmental fallows as a new policy tool to safeguard farmland biodiversity in Finland. Biol Conserv 159:355–366. doi:10.1016/j.biocon.2012.11.016 CrossRefGoogle Scholar
  71. Torra J, Recasens J (2008) Demography of Corn Poppy (Papaver rhoeas) in Relation to Emergence Time and Crop Competition. Weed Sci 56:826–833. doi:10.1614/WS-07-077.1 CrossRefGoogle Scholar
  72. Traba J, Acebes P, Malo JE et al (2013) Habitat selection and partitioning of the Black-bellied Sandgrouse (Pterocles orientalis), the Stone Curlew (Burhinus oedicnemus) and the Cream-coloured Courser (Cursorius cursor) in arid areas of North Africa. J Arid Environ 94:10–17. doi:10.1016/j.jaridenv.2013.02.007 CrossRefGoogle Scholar
  73. Traba J, Morales MB, Carmona CP, Delgado MP (2015) Resource partitioning and niche segregation in a steppe bird assemblage. Commun Ecol 16:178–188. doi:10.1556/168.2015.16.2.5 CrossRefGoogle Scholar
  74. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  75. Vickery J, Carter N, Fuller RJ (2002) The potential value of managed cereal field margins as foraging habitats for farmland birds in the UK. Agric Ecosyst Environ 89:41–52. doi:10.1016/S0167-8809(01)00317-6 CrossRefGoogle Scholar
  76. Vickery JA, Bradbury RB, Henderson IG et al (2004) The role of agri-environment schemes and farm management practices in reversing the decline of farmland birds in England. Biol Conserv 119:19–39. doi:10.1016/j.biocon.2003.06.004 CrossRefGoogle Scholar
  77. Weiher E, van der Werf A, Thompson K et al (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  78. Wilson JD, Morris AJ, Arroyo BE et al (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric Ecosyst Environ 75:13–30. doi:10.1016/S0167-8809(99)00064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Irene Robleño
    • 1
  • Gerard Bota
    • 2
  • David Giralt
    • 2
  • Jordi Recasens
    • 1
  1. 1.Department of Hortofructicultura, Botànica i Jardineria, Agrotecnio, ETSEAUniversitat de LleidaLleidaSpain
  2. 2.Biodiversity and Animal Conservation Lab, Àrea de BiodiversitatForest Sciences Center of Catalonia (CTFC)SolsonaSpain

Personalised recommendations