Biodiversity and Conservation

, Volume 26, Issue 1, pp 85–102 | Cite as

Cereal density and N-fertiliser effects on the flora and biodiversity value of arable headlands

  • Markus Wagner
  • James M. Bullock
  • Lucy Hulmes
  • Sarah Hulmes
  • Richard F. Pywell
Original Paper


Modern intensive farming caused pronounced changes to the European arable flora. Many species adapted to less intensive traditional farming declined severely, as did the potential of unsown arable vegetation to support higher trophic levels. To reverse these trends, various agri-environment measures were introduced. One such measure is to manage cereal headlands as conservation headlands, involving strict restrictions on pesticide and fertiliser use. An additional modification to management which could reduce crop competition and thus deliver benefits to arable plants is cereal sowing at reduced rates. However, little is known about its benefits to rare and declining arable plants, or to species of value to higher trophic levels, and whether it can be implemented without concomitant increase in undesirable weeds. We set up identical two-factorial experiments in winter wheat and spring barley, combining a nitrogen fertiliser versus no fertiliser treatment with cereal sowing at economic rates versus sowing at rates reduced by 75 %, with added sowing of a mixture of rare arable species. Both experiments also included an uncropped but cultivated control equivalent to another agri-environment measure. Our results show that reduced cereal sowing in conservation headlands can benefit rare and declining species, as well as arable plant diversity, without necessarily resulting in a concomitant increase in undesirable weeds. While such benefits tended to be larger in uncropped cultivated controls, conservation headlands have the advantage of not requiring land being taken out of production. Moreover, as shown in this study, their benefits to arable plants can be maximised by reduced sowing.


Agri-environment schemes Agro-ecology Conservation headlands Crop competition Rare arable plants Weed management 



This study was part of a project funded by Defra (BD5204). The field experiments were set up in cooperation with Charles Church Partnership and with Jon Harley, the farm manager of Roundwood Estate. Valuable advice was provided by Mike Green from Natural England. We would like to thank Marek Nowakowski (Wildlife Farming Company) for advice and help while setting up the experimental treatments, and Pete Nuttall for help with field recording. Two anonymous referees made valuable comments and suggestions during the review process.

Supplementary material

10531_2016_1225_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 kb)


  1. Albrecht H, Prestele J, Altenfelder S, Wiesinger K, Kollmann J (2014) New approaches to the conservation of rare arable plants in Germany. In: Nordmeyer H, Ulber L (eds) Delivering arable biodiversity. Proceedings 26th German Conference on Weed Biology and Weed Control March 11–13, 2014, Braunschweig. Bundesforschungsinstitut für Kulturpflanzen, Braunschweig, pp 180–189. Accessed 20 April 2016
  2. Albrecht H, Cambecèdes J, Lang M, Wagner M (in press) Management options for rare arable plants in Europe. Bot Lett 164(4). doi: 10.1080/23818107.2016.1237886
  3. Andrew IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res 55:239–248. doi: 10.1111/wre.12137 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aspinall D (1961) The control of tillering in the barley plant. 1. The pattern of tillering and its relation to nutrient supply. Aus J Biol Sci 14:493–505. doi: 10.1071/BI9610493 Google Scholar
  5. Asteraki EJ, Hart BJ, Ings TC, Manley WJ (2004) Factors influencing the plant and invertebrate diversity of arable field margins. Agr Ecosyst Environ 102:219–231. doi: 10.1016/j.agee.2003.07.003 CrossRefGoogle Scholar
  6. Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, Morton D, Smart SM, Memmott J (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88. doi: 10.1038/nature16532 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bischoff A, Mahn E-G (2000) The effects of nitrogen and diaspore availability on the regeneration of weed communities following extensification. Agr Ecosyst Environ 77:237–246. doi: 10.1016/S0167-8809(99)00104-8 CrossRefGoogle Scholar
  8. Boatman ND, Wilson PJ (1988) Field edge management for game and wildlife conservation. In: The practice of weed control and vegetation management in forestry, amenity and conservation areas. Aspects of applied biology, vol 16. Association of Applied Biologists, Wellesbourne, pp 89–94Google Scholar
  9. Bretagnolle V, Gaba S (2015) Weeds for bees? A review. Agron Sustain Dev 35:891–909. doi: 10.1007/s13593-015-0302-5 CrossRefGoogle Scholar
  10. Byfield AJ, Wilson PJ (2005) Important Arable Plant Areas: identifying priority sites for arable plant conservation in the United Kingdom. Plantlife International, Salisbury. Accessed 20 Apr 2016
  11. Cannell RQ (1985) Reduced tillage in north-west Europe—a review. Soil Till Res 5:129–177. doi: 10.1016/0167-1987(85)90028-5 CrossRefGoogle Scholar
  12. Carvell C, Westrich P, Meek WR, Pywell RF, Nowakowski M (2006) Assessing the value of annual and perennial forage mixtures for bumblebees by direct observation and pollen analysis. Apidologie 37:326–340. doi: 10.1051/apido:2006002 CrossRefGoogle Scholar
  13. Champion GT, Froud-Williams RJ, Holland JM (1998) Interactions between wheat (Triticum aestivum L.) cultivar, row spacing and density and the effect on weed suppression and crop yield. Ann Appl Biol 133:443–453. doi: 10.1111/j.1744-7348.1998.tb05842.x CrossRefGoogle Scholar
  14. Chancellor RJ, Fryer JD, Cussans GW (1984) The effects of agricultural practices on weeds in arable land. In: Jenkins D (ed) Agriculture and the environment—proceedings of ITE symposium no. 13 held at Monks Wood Experimental Station on 28–29 February and 1 March 1984. Institute of Terrestrial Ecology, Cambridge, pp 89–94Google Scholar
  15. Cheffings CM, Farrell L (2005) The vascular plant Red Data List for Great Britain. Species Status No. 7. Joint Nature Conservation Committee, PeterboroughGoogle Scholar
  16. Chiverton PA (1994) Large-scale field trials with conservation headlands in Sweden. In: Boatman N (ed) Field margins: integrating agriculture and conservation. BCPC Monograph No. 58. British Crop Production Council, Farnham, pp 89–94Google Scholar
  17. Clothier L (2013) Campaign for the farmed environment: entry level stewardship option uptake. Defra Agricultural Change and Environment Observatory Research Report No. 32. Department for Environment, Food and Rural Affairs, London. Accessed 20 April 2016
  18. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  19. Critchley CNR, Allen DS, Fowbert JA, Mole AC, Gundrey AL (2004) Habitat establishment on arable land: assessment of an agri-environment scheme in England, UK. Biol Conserv 119:429–442. doi: 10.1016/j.biocon.2004.01.004 CrossRefGoogle Scholar
  20. Critchley CNR, Fowbert JA, Sherwood AJ (2006) The effects of annual cultivation on plant community composition of uncropped arable field boundary strips. Agr Ecosyst Environ 113:196–205. doi: 10.1016/j.agee.2005.05.013 CrossRefGoogle Scholar
  21. de Snoo GR (1995) Unsprayed field margins: implications for environment, biodiversity and agricultural practice. PhD thesis, University of LeidenGoogle Scholar
  22. Defra (2002) The Countryside Stewardship Scheme. New arable options from 2002. Department for Environment, Food and Rural Affairs, LondonGoogle Scholar
  23. Epperlein LRF, Prestele JW, Albrecht H, Kollmann J (2014) Reintroduction of a rare arable weed: competition effects on weed fitness and crop yield. Agr Ecosyst Environ 188:57–62. doi: 10.1016/j.agee.2014.02.011 CrossRefGoogle Scholar
  24. Fischer A, Milberg P (1997) Effects on the flora of extensified use of field margins. Swed J Agr Res 27:105–111Google Scholar
  25. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage Press, Thousand OaksGoogle Scholar
  26. Franke AC, Lotz LAP, van der Burg WJ, van Overbeek L (2009) The role of arable weed seeds for agroecosystem functioning. Weed Res 49:131–141. doi: 10.1111/j.1365-3180.2009.00692.x CrossRefGoogle Scholar
  27. Froud-Williams RJ, Drennan DSH, Chancellor RJ (1983) Influence of cultivation regime on weed floras of arable cropping systems. J Appl Ecol 20:187–197. doi: 10.2307/2403385 CrossRefGoogle Scholar
  28. Hald AB (1999) The impact of changing the season in which the cereals are sown on the diversity of the weed flora in rotational fields in Denmark. J Appl Ecol 36:24–32. doi: 10.1046/j.1365-2664.1999.00364.x CrossRefGoogle Scholar
  29. Hanley ME, Franco M, Pichon S, Darvill B, Goulson D (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct Ecol 22:592–598. doi: 10.1111/j.1365-2435.2008.01415.x CrossRefGoogle Scholar
  30. Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN, Rothery P, Bohan DA, Brooks DR, Champion GT, Dewar AM, Heard MS, Woiwod IP, Daniels RE, Young MW, Parish AM, Scott RJ, Firbank LG, Squire GR (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philos T R Soc B 358:1899–1913. doi: 10.1098/rstb.2003.1406 CrossRefGoogle Scholar
  31. Hilbig W, Bachthaler G (1992a) Wirtschaftsbedingte Veränderungen der Segetalvegetation in Deutschland im Zeitraum von 1950–1990. I: Entwicklung der Aufnahmeverfahren, Verschwinden der Saatunkräuter, Rückgang von Kalkzeigem, Säurezeigern, Feuchtezeigern, Zwiebel- und Knollengeophyten, Abnahme der Artenzahlen. Angew Bot 66:192–200Google Scholar
  32. Hilbig W, Bachthaler G (1992b) Wirtschaftsbedingte Veränderungen der Segetalvegetation in Deutschland im Zeitraum von 1950–1990. II: Zunahme herbizidverträglicher Arten, nitrophiler Arten, von Ungräsern, vermehrtes Auftreten von Rhizom- und Wurzelunkräutern, Auftreten und Ausbreitung von Neophyten, Förderung gefährdeter Ackerwildkrautarten, Integrierter Pflanzenbau. Angew Bot 66:201–209Google Scholar
  33. Holland JM, Hutchison MAS, Smith B, Aebischer NJ (2006) A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann Appl Biol 148:49–71. doi: 10.1111/j.1744-7348.2006.00039.x CrossRefGoogle Scholar
  34. Jones NE, Smith BM (2007) Effects of selective herbicide treatment, row width and spring cultivation on weed and arthropod communities in winter wheat. In: Boatman N, Bradbury R, Critchley N, Holland J, Marshall J, Ogilvy S (eds) Delivering arable biodiversity. Aspects of applied biology, vol 81. Association of Applied Biologists, Wellesbourne, pp 39–46Google Scholar
  35. Kirby EJM (1967) The effect of plant density upon the growth and yield of barley. J Agr Sci 68:317–324. doi: 10.1017/S0021859600012806 CrossRefGoogle Scholar
  36. Kleijn D, Raemakers I (2008) A retrospective analysis of pollen host plant use by stable and declining bumblebees. Ecology 89:1811–1823. doi: 10.1890/07-1275.1 CrossRefPubMedGoogle Scholar
  37. Kleijn D, van der Voort LAC (1997) Conservation headlands for rare arable weeds: the effects of fertilizer application and light penetration on plant growth. Biol Conserv 81:57–67. doi: 10.1016/S0006-3207(96)00153-X CrossRefGoogle Scholar
  38. Lang M, Prestele J, Fischer C, Kollmann J, Albrecht H (2016) Re-introduction of rare arable plants by seed transfer. What are the optimal sowing rates? Ecol Evol 6:5506–5516. doi: 10.1002/ece3.2303
  39. MAFF (1998) The Countryside Stewardship Scheme. Arable Stewardship. Information and how to apply. Ministry of Agriculture, Fisheries and Food, LondonGoogle Scholar
  40. Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89. doi: 10.1046/j.1365-3180.2003.00326.x CrossRefGoogle Scholar
  41. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106:259–271. doi: 10.1016/S0006-3207(01)00252-X CrossRefGoogle Scholar
  42. Morris NL, Miller PCH, Orson JH, Froud-Williams RJ (2010) The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—a review. Soil Till Res 108:1–15. doi: 10.1016/j.still.2010.03.004 CrossRefGoogle Scholar
  43. Natural England (2014) National Character Area Profile: 130. Hampshire Downs. Natural England Publications. Accessed 20 Apr 2016
  44. Peters K, Gerowitt B (2014) Response of the two rare arable weed species Lithospermum arvense and Scandix pecten-veneris to climate change conditions. Plant Ecol 215:1013–1023. doi: 10.1007/s11258-014-0358-3 CrossRefGoogle Scholar
  45. Pinke G, Gunton RM (2014) Refining rare weed trait syndromes along arable intensification gradients. J Veg Sci 25:978–989. doi: 10.1111/jvs.12151 CrossRefGoogle Scholar
  46. Potts GR, Ewald JA, Aebischer NJ (2010) Long-term changes in the flora of the cereal ecosystem on the Sussex Downs, England, focusing on the years 1968–2005. J Appl Ecol 47:215–226. doi: 10.1111/j.1365-2664.2009.01742.x CrossRefGoogle Scholar
  47. Pywell RF, Hulmes L, Meek WR, Nowakowski M (2010) Practical management of scarce arable populations. In: Boatman N, Green M, Holland J, Marshall J, Renwick A, Siriwardena G, Smith B, de Snoo G (eds) Agri-environment schemes—what have they achieved and where do we go from here? Aspects of applied biology, vol 100. Association of Applied Biologists, Wellesbourne, pp 175–182Google Scholar
  48. Rial-Lovera K, Davies WP, Cannon ND, Conway JS (2016) Weed development in spring wheat after contrasting soil tillage and nitrogen treatment. Ann Appl Biol 169:236–247. doi: 10.1111/aab.12294 CrossRefGoogle Scholar
  49. Richner N, Holderegger R, Linder HP, Walter T (2015) Reviewing change in the arable flora of Europe: a meta-analysis. Weed Res 55:1–13. doi: 10.1111/wre.12123 CrossRefGoogle Scholar
  50. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176. doi: 10.1046/j.1365-2664.2002.00695.x CrossRefGoogle Scholar
  51. Schumacher W (1980) Schutz und Erhaltung gefährdeter Ackerwildkräuter durch Integration von landwirtschaftlicher Nutzung und Naturschutz. Natur und Landschaft 55:447–453Google Scholar
  52. Smith RM, Roy DB (2008) Revealing the foundations of biodiversity: the Database of British Insects and their Foodplants. Brit Wildl 20:17–25Google Scholar
  53. Sotherton NW (1990) The environmental benefits of conservation headlands in cereal fields. Pestic Outlook 1:14–18Google Scholar
  54. Spink JH, Semere T, Sparkes DL, Whaley JM, Foulkes MJ, Clare RW, Scott RK (2000) Effect of sowing date on the optimum plant density of winter wheat. Ann Appl Biol 137:179–188. doi: 10.1111/j.1744-7348.2000.tb00049.x CrossRefGoogle Scholar
  55. Stace C (2010) New flora of the British Isles, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  56. Stewart KEJ, Bourn NAD, Thomas JA (2001) An evaluation of three quick methods commonly used to assess sward height in ecology. J Appl Ecol 38:1148–1154. doi: 10.1046/j.1365-2664.2001.00658.x CrossRefGoogle Scholar
  57. Still K, Byfield A (2007) New priorities for arable plant conservation. Plantlife International, Salisbury. Accessed 20 Apr 2016
  58. Stoate C, Boatman ND, Borralho RJ, Rio Carvalho C, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365. doi: 10.1006/jema.2001.0473 CrossRefGoogle Scholar
  59. Storkey J, Westbury DB (2007) Managing arable weeds for biodiversity. Pest Manag Sci 63:517–523. doi: 10.1002/ps.1375 CrossRefPubMedGoogle Scholar
  60. Storkey J, Moss SR, Cussans JW (2010) Using assembly theory to explain changes in a weed flora in response to agricultural intensification. Weed Sci 58:39–46. doi: 10.1614/WS-09-096.1 CrossRefGoogle Scholar
  61. Sutcliffe OL, Kay QON (2000) Changes in the arable flora of central southern England since the 1960s. Biol Conserv 93:1–8. doi: 10.1016/S0006-3207(99)00119-6 CrossRefGoogle Scholar
  62. Svensson R, Wigren M (1982) Några ogräsarters tillbakagång belyst genom konkurrens-, gödslings- och herbicidförsök. Sven Bot Tidskr 76:241–258Google Scholar
  63. Walker KJ, Critchley CNR, Sherwood AJ, Large R, Nuttall P, Hulmes S, Rose R, Mountford JO (2007) The conservation of arable plants on cereal field margins: an assessment of new agri-environment scheme options in England, UK. Biol Conserv 136:260–270. doi: 10.1016/j.biocon.2006.11.026 CrossRefGoogle Scholar
  64. Wilson P (1994) Managing field margins for the conservation of the arable flora. In: Boatman N (ed) Field margins: integrating agriculture and conservation. BCPC Monograph No. 58. British Crop Production Council, Farnham, pp 253–258Google Scholar
  65. Wilson PJ (1999) The effect of nitrogen on populations of rare arable plants in Britain. In: Boatman ND (ed) Field margins and buffer zones: ecology, management and policy. Aspects of applied biology, vol. 54. Association of Applied Biologists, Wellesbourne, pp 93–100Google Scholar
  66. Wilson PJ (2010) The Roundwood Estate—rare arable plant survey. Unpublished reportGoogle Scholar
  67. Wilson JD, Morris AJ, Arroyo BE, Clark SC, Bradbury RB (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agr Ecosyst Environ 75:13–30. doi: 10.1016/S0167-8809(99)00064-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.NERC Centre for Ecology & HydrologyOxfordshireUK

Personalised recommendations