Biodiversity and Conservation

, Volume 25, Issue 13, pp 2723–2741 | Cite as

Modeling co-occurrence between toxic prey and naïve predators in an incipient invasion

  • Kerry A. BrownEmail author
  • Zach J. Farris
  • Gabriel Yesuf
  • Brian D. Gerber
  • Fidisoa Rasambainarivo
  • Sarah Karpanty
  • Marcella J. Kelly
  • Jean Claude Razafimahaimodison
  • Eileen Larney
  • Patricia C. Wright
  • Steig E. Johnson
Original Paper


Biological invasions can represent important threats to endemic species, including those within the invaders’ food webs. The Asian common toad (Duttaphrynus melanostictus) was introduced to Madagascar in 2011. This introduction presents a potentially dangerous prey item to a relatively naïve, highly diverse endemic carnivore fauna. Using a multivariate niche modeling approach (background test), we assessed the predicted niche overlap between D. melanostictus and six endemic carnivores in eastern Madagascar. The overlap between this potential prey and predators was assessed on four environmental niche axes: temperature, precipitation, vegetation cover and elevation. Our results showed a mixture of niche overlap and divergence between D. melanostictus and the six carnivores for environmental axes tested. There was significant overlap with five of the carnivores on temperature and NDVI axes. On the precipitation axis, there was significant overlap between D. melanostictus with two species. Our results suggested that wide-ranging, locally rare carnivores may overlap extensively with D. melanostictus. The six carnivores that inhabit the eastern rainforest of Madagascar will likely share multiple, niche axes with this novel potential prey item. Species that eat the non-native common toad and are susceptible to its toxins are at conservation risk because their populations may not be robust enough to adapt quickly to this threat. We advocate closely monitoring these emerging interactions and suggest a preemptive conservation strategy for carnivores potentially at risk.


Asian common toad Background test Carnivores Ecological niche models Invasive alien species Madagascar 



The non-TEAM carnivore occurrence data from Ranomafana National Park and the carnivore data from Ialatsara and Matsinjo were collected by BDG, SK, and Johny Randrianantenaina as part of BDG’s Masters Thesis with funding provided by Virginia Tech, National Geographic Society Committee on Research and Exploration, Sigma Xi Virginia Tech Master’s Degree and Grants-in-Aid Awards, National Science Foundation Graduate Research Fellowship Program, and Burd Sheldon McGinnes Graduate Fellowship. Carnivore data from the Makira-Masoala region were collected by ZJF, in collaboration with SK and MJK, with funding from Cleveland Metroparks Zoo, European Association of Zoos and Aquariums, Idea Wild, National Geographic Society-Waitts grant (#W96-10), Peoples Trust for Endangered Species, Virginia Tech Chapter of Sigma Xi, Virginia Tech Department of Fish & Wildlife, and logistical and financial support from the Wildlife Conservation Society (WCS) Madagascar Program. Carnivore data from the Betampona Strict Reserve was collected by FR and funding for these surveys was provided by Saint Louis Zoo Wildcare Institute and the Whitney R. Harris World Ecology Center.

Author’s contribution

KAB, ZJF, and SEJ developed the concept for the manuscript; KAB and GY performed the analyses; ZJF, BDG, FR, SK, MJK, JCR, EL and PCW collected the data; KAB, ZJF, SEJ, GY, BDG, FR, SK, MJK, JCR, EL and PCW contributed to writing; KAB, ZJF and SEJ led the writing.

Supplementary material

10531_2016_1198_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)
10531_2016_1198_MOESM2_ESM.docx (803 kb)
Supplementary material 2 (DOCX 803 kb)
10531_2016_1198_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 14 kb)


  1. Albignac R (1972) The carnivora of Madagascar. In: Biogeography and ecology in Madagascar. Springer, pp 667–682Google Scholar
  2. Albignac R, Jolly A, Oberle P, Albignac R (1984) The carnivores. In: Jolly A, Oberle P, Albignac R (eds) Key environments: Madagascar. Pergamon Press, Oxford, pp 167–182CrossRefGoogle Scholar
  3. Anderson RP, Peterson AT, Gomez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98:3–16CrossRefGoogle Scholar
  4. Andreone F (2014) Risk review is under way for invasive toad. Nature 512:253CrossRefPubMedGoogle Scholar
  5. Beckmann C, Shine R (2009) Impact of invasive cane toads on Australian birds. Conserv Biol 23:1544–1549. doi: 10.1111/J.1523-1739.2009.01261.X CrossRefPubMedGoogle Scholar
  6. Britt A, Virkaitis V (2003) Brown-tailed Mongoose Salanoia concolor in the Betampona Reserve, eastern Madagascar: photographs and an ecological comparison with ring-tailed Mongoose Galidia elegans. Small Carniv Conserv 28:1–3Google Scholar
  7. Britt A, Welch C, Katz A (2001) The impact of Cryptoprocta ferox on the Varecia v. variegata reinforcement project at Betampona. Lemur News 6:35–37Google Scholar
  8. Brockman DK, Godfrey LR, Dollar LJ, Ratsirarson J (2008) Evidence of invasive Felis silvestris predation on Propithecus verreauxi at Beza Mahafaly Special Reserve, Madagascar. Int J Primatol 29:135–152CrossRefGoogle Scholar
  9. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589. doi: 10.1098/Rsbl.2008.0254 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi: 10.1111/J.1461-0248.2007.01060.X CrossRefPubMedGoogle Scholar
  11. Brown KA, Spector S, Wu W (2008) Multi-scale analysis of species introductions: combining landscape and demographic models to improve management decisions about non-native species. J Appl Ecol 45:1639–1648. doi: 10.1111/J.1365-2664.2008.01550.X CrossRefGoogle Scholar
  12. Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2:909–914. ARTN e197. doi:  10.1371/journal.pbio.0020197
  13. Cassey P, Hogg CJ (2015) Escaping captivity: the biological invasion risk from vertebrate species in zoos. Biol Conserv 181:18–26. doi: 10.1016/J.Biocon.2014.10.023 CrossRefGoogle Scholar
  14. Chen KK, Kovarikova A (1967) Pharmacology and toxicology of toad venom. J Pharm Sci 56:1535–1541CrossRefPubMedGoogle Scholar
  15. Costa GC, Wolfe C, Shepard DB, Caldwell JP, Vitt LJ (2008) Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J Biogeogr 35:637–646CrossRefGoogle Scholar
  16. Crawford AJ, Lips KR, Bermingham E (2010) Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci USA 107:13777–13782. doi: 10.1073/Pnas.0914115107 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crottini A, Madsen O, Poux C, Strauß A, Vieites DR, Vences M (2012) Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. Proc Nat Acad Sci 109:5358–5363CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dollar L (1999) Preliminary report on the status, activity cycle, and ranging of Cryptoprocta ferox in the Malagasy rainforest, with implications for conservation. Small Carniv Conserv 20:7–10Google Scholar
  19. Dunham AE (1998) Notes on the behavior of the Ring-tailed mongoose, Galidia elegans, at Ranomafana National Park, Madagascar. Small Carniv Conserv 19:21–24Google Scholar
  20. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRefGoogle Scholar
  21. Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  22. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677CrossRefGoogle Scholar
  23. ESRI (2012) ArcGIS Desktop: Release 10.1. Environmental Systems Research Institute, RedlandsGoogle Scholar
  24. Farris ZJ (2014) Response of Madagascar’s endemic carnivores to fragmentation, hunting, and exotic carnivores across Masoala-Makira landscape. Dissertation, Virginia Tech, BlacksburgGoogle Scholar
  25. Farris ZJ, Kelly MJ, Karpanty SM, Ratelolahy F, Andrianjakarivelo V, Holmes C (2012) Brown-tailed Vontsira Salanoia concolor (Eupleridae) documented in Makira Natural Park, Madagascar: new insights on distribution and camera-trap success. Small Carniv Conserv 47:82–86Google Scholar
  26. Farris ZJ, Karpanty SM, Ratelolahy F, Kelly MJ (2014) Predator–primate distribution, activity, and co-occurrence in relation to habitat and human activity across fragmented and contiguous forests in northeastern Madagascar. Int J Primatol 35:859–880CrossRefGoogle Scholar
  27. Farris ZJ, Gerber B, Karpanty SM, Murphy A, Ratelolahy F, Kelly MJ (2015a) When carnivores roam: temporal patterns and partitioning among Madagascar’s native and exotic carnivores. J Zool 296:45–57. doi: 10.1111/jzo.12216 CrossRefGoogle Scholar
  28. Farris ZJ et al (2015b) Hunting, exotic carnivores, and habitat loss: anthropogenic effects on a native carnivore community, Madagascar. PLoS One 10:e0136456CrossRefPubMedPubMedCentralGoogle Scholar
  29. Farris ZJ, Kelly MJ, Karpanty SM, Ratelolahy F (2015c) Patterns of spatial co-occurrence among native and exotic carnivores in NE Madagascar. Anim Conserv. doi: 10.1111/acv.12233 Google Scholar
  30. Farris ZJ, Gerber B, Kelly MJ, Karpanty SM, Ratelolahy F, Andrianjakarivelo V (In press) Spatio-temporal overlap between a native and exotic carnivore in Madagascar: evidence of spatial exclusion. In: Do Linh San E, Sato JJ, Belant JL, Somers MJ (eds) Small carnivores: evolution, ecology, behaviour and conservation. Wiley, ChichesterGoogle Scholar
  31. Faulkner KT, Robertson MP, Rouget M, Wilson JRU (2014) A simple, rapid methodology for developing invasive species watch lists. Biol Conserv 179:25–32. doi: 10.1016/J.Biocon.2014.08.014 CrossRefGoogle Scholar
  32. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 21:38–49CrossRefGoogle Scholar
  33. Fisher DO, Blomberg SP, Owens IPF (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc R Soc B 270:1801–1808. doi: 10.1098/Rspb.2003.2447 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Garbutt N (2007) Mammals of Madagascar: a complete guide. Yale University Press, New HavenGoogle Scholar
  35. Gerber BD (2011) Comparing density analyses and carnivore ecology in Madagascar’s southeastern rainforest. Masters Thesis, Virginia Tech, BlacksburgGoogle Scholar
  36. Gerber BD, Karpanty SM, Kelly MJ (2012a) Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Popul Ecol 54:43–54CrossRefGoogle Scholar
  37. Gerber BD, Karpanty SM, Randrianantenaina J (2012b) Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J Mammal 93:667–676CrossRefGoogle Scholar
  38. Gerber BD, Karpanty SM, Randrianantenaina J (2012c) The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx 46:414–422CrossRefGoogle Scholar
  39. Glaw F, Vences M (2007) A field guide to the amphibians and reptiles of Madagascar, 3rd edn. Vences and Glaw Verlag, KölnGoogle Scholar
  40. Gobron N, Pinty B, Verstraete MM, Widlowski JL (2000) Advanced vegetation indices optimized for up-coming sensors: design, performance, and applications. IEEE Trans Geosci Remote Sens 38:2489–2505CrossRefGoogle Scholar
  41. Godsoe W, Case BS (2015) Accounting for shifts in the frequency of suitable environments when testing for niche overlap. Methods Ecol Evol 6:59–66. doi: 10.1111/2041-210x.12307 CrossRefGoogle Scholar
  42. Goodman S (2003a) Carnivora: Galidia elegans, ring-tailed Mongoose, Vontsira mena. In: Goodman S, Benstead JP (eds) The natural history of Madagascar. The University of Chicago Press, Chicago, pp 1351–1354Google Scholar
  43. Goodman S (2003b) Carnivora: Galidictis fasciata, Broad-striped Mongoose, Vontsira fotsy. In: Goodman S, Benstead JP (eds) The natural history of Madagascar. The University of Chicago Press, Chicago, pp 1354–1357Google Scholar
  44. Goodman S (2003c) Predation on lemurs. In: Goodman S, Benstead JP (eds) The natural history of Madagascar. The University of Chicago Press, Chicago, pp 1159–1186Google Scholar
  45. Goodman SM (2012) Les Carnivora de Madagascar. Association Vahatra, AntananarivoGoogle Scholar
  46. Goodman SM, Benstead JP (2005) Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39:73–77. doi: 10.1017/S0030605305000128 CrossRefGoogle Scholar
  47. Goodman SM, Pidgeon M (1999) Carnivora of the reserve naturelle integrale d’Andohahela Madagascar. Fieldiana Zool 94:259–268Google Scholar
  48. Goodman S, Langrand O, Rasolonandrasana B (1997) The food habits of Cryptoprocta ferox in the high mountain zone of the Andringitra Massif, Madagascar (Carnivora, Viverridae). Mammalia 61:185–192CrossRefGoogle Scholar
  49. Hawkins CE (1998) Behaviour and ecology of the fossa, Cryptoprocta ferox (Carnivora: Viverridae) in a dry deciduous forest, western Madagascar. University of Aberdeen, ScotlandGoogle Scholar
  50. Hawkins C (2003) Cryptoprocta ferox, fossa, fosa. In: Goodman SM, Benstead JP (eds) The natural history of Madagascar. University of Chicago Press, Chicago, pp 1360–1363Google Scholar
  51. Hawkins CE, Racey PA (2005) Low population density of a tropical forest carnivore, Cryptoprocta ferox: implications for protected area management. Oryx 39:35–43CrossRefGoogle Scholar
  52. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/Joc.1276 CrossRefGoogle Scholar
  53. Inderjit (2005) Plant invasions: habitat invasibility and dominance of invasive plant species. Plant Soil 277:1–5. doi: 10.1007/S11104-004-6638-2 CrossRefGoogle Scholar
  54. IUCN (2016) The IUCN red list of threatened species Version 2016.1. Accessed June 2016
  55. Jansen P, Ahumada J, Fegraus E, O’Brian T (2014) TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In: Camera trapping: wildlife management and research. CSIRO Publishing, Melbourne, pp 263–270Google Scholar
  56. Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D (2006) Spatial segregation of specialists and generalists in bird communities. Ecol Lett 9:1237–1244. doi: 10.1111/J.1461-0248.2006.00977.X CrossRefPubMedGoogle Scholar
  57. Kerridge F, Ralisoamalala R, Goodman S, Pasnick S (2003) Fossa fossana, Malagasy striped civet, Fanaloka. In: Benstead SGaJ (ed) The natural history of Madagascar. The University of Chicago Press, Chicago, pp 1363–1365Google Scholar
  58. Kolby JE (2014) Stop Madagascar’s toad invasion now. Nature 509:563CrossRefPubMedGoogle Scholar
  59. Kotschwar M, Gerber B, Karpanty SM, Justin S, Rabenahy F (2014) Assessing carnivore distribution from local knowledge across a human-dominated landscape in central-southeastern Madagascar. Anim Conserv 18:82–91. doi: 10.1111/acv.12137 CrossRefGoogle Scholar
  60. Kull CA, Tassin J, Carriere SM (2014) Approaching invasive species in Madagascar. Madag Conserv Dev 9:60–70CrossRefGoogle Scholar
  61. Levins R (1968) Evolution in changing environments. Monographs in population biology, vol 2. Princeton University Press, New JerseyGoogle Scholar
  62. Lührs ML, Kappeler PM (2013) Simultaneous GPS tracking reveals male associations in a solitary carnivore. Behav Ecol Sociobiol 67:1731–1743CrossRefGoogle Scholar
  63. McClelland P, Reardon J, Kraus F, Raxworthy C, Randrianantoandro C (2015) Asian toad eradication feasibility report for Madagascar. Te Anau, New ZealandGoogle Scholar
  64. McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64:1231–1244. doi: 10.1111/J.1558-5646.2009.00900.X PubMedGoogle Scholar
  65. Mecke S (2014) Review risks before eradicating toads. Nature 511:534CrossRefPubMedGoogle Scholar
  66. Meyer JY, Pouteau R, Spotswood E, Taputuarai R, Fourdrigniez M (2015) The importance of novel and hybrid habitats for plant conservation on islands: a case study from Moorea (South Pacific). Biodivers Conserv 24:83–101. doi: 10.1007/S10531-014-0791-6 CrossRefGoogle Scholar
  67. Moore M, Fidy JF, Edmonds D (2015) The new toad in town: distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop Conserv Sci 8:440–455CrossRefGoogle Scholar
  68. Nakazato T, Warren DL, Moyle LC (2010) Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot 97:680–693. doi: 10.3732/Ajb.0900216 CrossRefPubMedGoogle Scholar
  69. Ordonez A (2014) Global meta-analysis of trait consistency of non-native plants between their native and introduced areas. Global Ecol Biogeogr 23:264–273. doi: 10.1111/Geb.12123 CrossRefGoogle Scholar
  70. Pearson RG (2015) Asian common toads in Madagascar: an urgent effort to inform surveys and eradication efforts. Global Change Biol 21:9. doi: 10.1111/Gcb.12693 CrossRefGoogle Scholar
  71. Perl RB, Nagy ZT, Sonet G, Glaw F, Wollenberg KC, Vences M (2014) DNA barcoding Madagascar’s amphibian fauna. Amphib-Reptil 35:197–206CrossRefGoogle Scholar
  72. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  73. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  74. Pittman SJ, Brown KA (2011) Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS One 6:e20583. doi: 10.1371/journal.pone.0020583 CrossRefPubMedPubMedCentralGoogle Scholar
  75. R Development Core Team (2012) R: A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  76. Radosavljevic A, Anderson RP (2014) Making better MAXENT models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643. doi: 10.1111/Jbi.12227 CrossRefGoogle Scholar
  77. Rasoloarison R, Rasolonandrasana B, Ganzhorn J, Goodman S (1995) Predation on vertebrates in the Kirindy Forest, western Madagascar. Ecotropica 1:59–65Google Scholar
  78. Reaser JK, Meyerson LA, Von Holle B (2008) Saving camels from straws: how propagule pressure-based prevention policies can reduce the risk of biological invasion. Biol Invasions 10:1085–1098. doi: 10.1007/S10530-007-9186-X CrossRefGoogle Scholar
  79. Rebollar EA, Hughey MC, Harris RN, Domangue RJ, Medina D, Ibanez R, Belden LK (2014) The lethal fungus Batrachochytrium dendrobatidis is present in lowland tropical forests of far eastern Panama. PLoS One 9:e95484. doi: 10.1371/journal.pone.0095484 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Reddy S, Dávalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727CrossRefGoogle Scholar
  81. Rosa GM, Crottini A, Noel J, Rabibisoa N, Raxworthy CJ, Andreone F (2014) A new phytotelmic species of Platypelis (Microhylidae: cophylinae) from the Betampona Reserve, eastern Madagascar. Salamandra 50:201–214Google Scholar
  82. Searcy CA, Shaffer HB (2014) Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. Ecography 37:983–992CrossRefGoogle Scholar
  83. Shine R (2010) The ecological impact of invasive cane toads (Bufo Marinus) in Australia. Quat Rev Biol 85:253–291CrossRefGoogle Scholar
  84. Srinivasulu C, Das I (2008) The herpetofauna of Nallamala Hills, Eastern Ghats, India: an annotated checklist, with remarks on nomenclature, taxonomy, habitat use, adaptive types and biogeography. Asiat Herpetol Res 11:110–131Google Scholar
  85. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biol 11:2234–2250. doi: 10.1111/J.1365-2486.2005.01018.X CrossRefGoogle Scholar
  86. Thuiller W, Gasso N, Pino J, Vila M (2012) Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol Invasions 14:1963–1980. doi: 10.1007/S10530-012-0206-0 CrossRefGoogle Scholar
  87. Van Dijk P et al (2004) Duttaphrynus melanostictus. In: The IUCN red list of threatened species 2004: e. T54707A11188511Google Scholar
  88. Ward-Fear G, Brown GP, Shine R (2010) Factors affecting the vulnerability of cane toads (Bufo marinus) to predation by ants. Biol J Linn Soc 99:738–751CrossRefGoogle Scholar
  89. Warren DL (2012) In defense of ‘niche modeling’. Trends ecol evol 27(9):497–500CrossRefPubMedGoogle Scholar
  90. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883. doi: 10.1111/J.1558-5646.2008.00482.X CrossRefPubMedGoogle Scholar
  91. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. doi: 10.1111/J.1600-0587.2009.06142.X CrossRefGoogle Scholar
  92. Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM (2015) Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J Ecol 103:121–129. doi: 10.1111/1365-2745.12345 CrossRefGoogle Scholar
  93. Wright P, Heckscher S, Dunham A (1997) Predation on Milne-Edward’s sifaka (Propithecus diadema edwardsi) by the fossa (Cryptoprocta ferox) in the rain forest of southeastern Madagascar. Folia Primatol 68:34–43CrossRefPubMedGoogle Scholar
  94. Yin H, Udelhoven T, Fensholt R, Pflugmacher D, Hostert P (2012) How normalized difference vegetation index (NDVI) trends from advanced very high resolution radiometer (AVHRR) and systeme probatoire d’observation de la terre vegetation (spot vgt) time series differ in agricultural areas: an inner mongolian case study. Remote Sens 4:3364–3389. doi: 10.3390/Rs4113364 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kerry A. Brown
    • 1
    Email author
  • Zach J. Farris
    • 2
  • Gabriel Yesuf
    • 1
  • Brian D. Gerber
    • 3
  • Fidisoa Rasambainarivo
    • 4
  • Sarah Karpanty
    • 2
  • Marcella J. Kelly
    • 2
  • Jean Claude Razafimahaimodison
    • 5
  • Eileen Larney
    • 5
  • Patricia C. Wright
    • 5
    • 6
  • Steig E. Johnson
    • 7
  1. 1.Department of Geography and GeologyKingston UniversityKingston Upon ThamesUK
  2. 2.Department of Biological SciencesAuburn UniversityAuburnUSA
  3. 3.Colorado Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsUSA
  4. 4.Department of BiologyUniversity of Missouri – St. LouisSt. LouisUSA
  5. 5.Centre ValBioRanomafanaMadagascar
  6. 6.Institute for the Conservation of Tropical EnvironmentsStony Brook UniversityStony BrookUSA
  7. 7.Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryCanada

Personalised recommendations