Skip to main content

Community ecological modelling as an alternative to physiographic classifications for marine conservation planning

Abstract

Accurate mapping of marine species and habitats is an important yet challenging component of establishing networks of representative marine protected areas. Due to limited biological data, marine classifications based on abiotic data are often used as surrogates to represent biological patterns. We tested the surrogacy of an existing physiographic marine classification using non-metric multidimensional scaling and permutational analysis of variance to determine whether species composition was significantly different among physiographic units. We also present an alternative ecological classification that incorporates biological and environmental data in a community modeling approach. We use data on 174 species of demersal fish and benthic invertebrates to identify mesoscale biological assemblages in a 100,000 km2 study area in the northeast Pacific Ocean. We identified assemblages using cluster analysis then used a random forest model with 12 environmental variables to delineate mesoscale ecological units. Our community modelling approach resulted in five geographically coherent ecological units that were best explained by changes in depth, temperature and salinity. Our model showed high predictive performance (AUC = 0.93) and the resulting ecological units represent more distinct species assemblages than those delineated by physiographic variables alone. A strength of our analysis is the ability to map model uncertainty to identify transition zones at unit boundaries. The output of this study provides a biotic driven classification that can be used to better achieve representativity in the MPA planning process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Araujo MB (2002) Biodiversity hotspots and zones of ecological transition Cons. Biol 16:1662–1663

    Google Scholar 

  2. AXYS Environmental Consulting Ltd (2000) British Columbia Marine Ecological Classification Update – Method Options. Prepared for Land Use Coordination Office, Government of British Columbia

  3. AXYS Environmental Consulting Ltd. (2001). British Columbia Marine Ecological Classification Update. Ministry of Sustainable Resource Management Decision Support Services

  4. Airamé S, Dugan JE, Lafferty KD et al (2003) Applying ecological criteria to marine reserve design: a case study from the california channel islands. Ecol Appl 13:S170–S184

    Article  Google Scholar 

  5. Allen MJ, Smith GB (1988) Atlas and zoogeography of common fishes in the bering sea and northeastern pacific. NOAA Technical Report NMFS 66. National Marine Fisheries Service, NOAA

  6. Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monog 83:557–574

    Article  Google Scholar 

  7. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  8. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  9. Ban NC (2009) Minimum data requirements for designing a set of marine protected areas, using commonly available abiotic and biotic datasets. Biodiv Cons 18(7):1829–1845

    Article  Google Scholar 

  10. Ban NC, Vincent AC (2009) Beyond marine reserves: exploring the approach of selecting areas where fishing is permitted, rather than prohibited. PLoS One 4:e6258. doi:10.1371/journal.pone.0006258

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ban NC, McDougall C, Beck M et al (2014) Applying empirical estimates of marine protected area effectiveness to assess conservation plans in British Columbia, Canada. Biol Consr 180:134–148. doi:10.1016/j.biocon.2014.09.037

    Article  Google Scholar 

  12. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeog 19(1):134–143

    Article  Google Scholar 

  13. Beale CM, Lennon JJ (2012) Incorporating uncertainty in predictive species distribution modelling. Philos Trans R Soc Lond B 367:247–258

    Article  Google Scholar 

  14. Beier P, Sutcliffe P, Hjort J et al (2015) A review of selection-based tests of abiotic surrogates for species representation. Conserv Biol 29:668–679. doi:10.1111/cobi.12509

    Article  PubMed  Google Scholar 

  15. Breiman L (2001) Random forests. Mach L 45:5–32

    Google Scholar 

  16. Canada—British Columbia Marine Protected Area Network Strategy(2014) Available from https://www.for.gov.bc.ca/tasb/slrp/pdf/ENG_BC_MPA_LOWRES.pdf Accessed 8 June 2015

  17. CBD (2010) Aichi Biodiversity Targets, Strategic Plan for Biodiversity 2011-2020 Convention on Biodiversity, https://www.cbd.int/sp/targets/. Accessed 4 January 2016

  18. Ceballos G, Ehrlich P, Barnosky A et al (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci Adv 1:1–5. doi:10.1126/sciadv.1400253

    Article  Google Scholar 

  19. Core Development Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  20. Crase B, Liedloff AC, Wintle BA (2012) A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35(10):888–897

    Article  Google Scholar 

  21. Cutler DR, Edwards TC Jr, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  22. De Càceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  23. Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol Biogeog 16(2):129–138

    Article  Google Scholar 

  24. Dormann CF, McPherson JM, Araújo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628

    Article  Google Scholar 

  25. Druehl L (2000) Pacific seaweeds. Harbour Publ, Madeira Park

    Google Scholar 

  26. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible symmetrical approach. Ecol Monog 67(3):345–366

    Google Scholar 

  27. Eastwood P, Souissi S, Rogers S et al (2006) Mapping seabed assemblages using comparative top-down and bottom-up classification approaches. Can J Fish Aquat Sci 63:1536–1548

    Article  Google Scholar 

  28. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  29. Fenberg PB, Menge BA, Raimondi PT, Rivadeneira MM (2015) Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38(1):83–95

    Article  Google Scholar 

  30. Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404. doi:10.1111/j.1365-2664.2006.01149.x

    Article  Google Scholar 

  31. Franklin J (2009) Mapping species distributions—spatial inference and prediction. Cambridge University Press, New York

    Google Scholar 

  32. Galili T (2015) dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. doi:10.1093/bioinformatics/btv428

    PubMed  PubMed Central  Google Scholar 

  33. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Gonzalez-Mirelis G, Lindegarth M (2012) Predicting the distribution of out-of-reach biotopes with decision trees in a Swedish marine protected area. Ecol Appl 22(8):2248–2264

    Article  PubMed  Google Scholar 

  35. Gould SF, Beeton NJ, Harris RM et al (2014) A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecol Evol 4(24):4798–4811

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gregr EJ, Ahrens AL, Perry IR (2012) Reconciling classifications of ecologically and biologically significant areas in the world’s oceans. Mar Pol 36(3):716–726

    Article  Google Scholar 

  37. Halpern BS, Regan HM, Possingham HP, McCarthy MA (2006) Accounting for uncertainty in marine reserve design. Ecol Lett 9:2–11

    Article  PubMed  Google Scholar 

  38. Harris PT (2012a) Biogeography, benthic ecology, and habitat classification system. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, San Francisco, pp 61–87

    Chapter  Google Scholar 

  39. Harris PT (2012b) Surrogacy. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, San Francisco, pp 93–102

    Chapter  Google Scholar 

  40. Harris PT, Baker EK (2012) GeoHab atlas of seafloor geomorphic features and benthic habitats: synthesis and lessons learned. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, San Francisco, pp 871–890

    Chapter  Google Scholar 

  41. Hayes KR et al (2015) Identifying indicators and essential variables for marine ecosystems. Ecol Ind 57:409–419. doi:10.1016/j.ecolind.2015.05.006

    Article  Google Scholar 

  42. Hewitt JE, Thrush SE, Legendre P, Funnell GA, Ellis J, Morrison M (2004) Mapping of marine soft-sediment communities: integrated sampling for ecological interpretation. Ecol Appl 14:1203–1216. doi:10.1890/03-5177

    Article  Google Scholar 

  43. Jefferis G (2014) dendroextras: Extra functions to cut, label and colour dendrogram clusters. R package version 0.2.1. http://CRAN.R-project.org/package=dendroextras

  44. Johannessen D, Haggarty D, Pringle J (2004) Boundary definition for the central coast integrated management area. Can Sci Advis Sec Res Doc 2004/050

  45. Juffe-Bignoli D, Burgess ND, Bingham H et al (2014) Protected Planet Report 2014. UNEP-WCMC, Cambridge

    Google Scholar 

  46. Jurasinski G and contributions from V. Retzer (2012). simba: a Collection of functions for similarity analysis of vegetation data. R package version 0.3-5. http://CRAN.R-project.org/package=simba

  47. Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25(5):616–625

    Article  Google Scholar 

  48. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  49. Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeog 37(11):2029–2053

    Article  Google Scholar 

  50. Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13(1):66–69

    Google Scholar 

  51. Langford WT, Gordon A, Bastin L (2009) When do conservation planning methods deliver? Quantifying the consequences of uncertainty. Ecol Inform 4:123–135

    Article  Google Scholar 

  52. Last PR, Lyne VD, Williams A, Davies CR, Butler AJ, Yearsley GK (2010) A hierarchical framework for classifying seabed biodiversity with application to planning and managing Australia’s marine biological resources. Biol Cons 143(7):1675–1686

    Article  Google Scholar 

  53. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673

    Article  Google Scholar 

  54. Legendre P, Legendre L (2012) Numerical ecology, 3rd ed. Developments in environmental modelling, vol 24. Elsevier, Amsterdam

    Google Scholar 

  55. Lennon JJ (2000) Red-shifts and red herrings in geographical ecology. Ecography 23(1):101–113

    Article  Google Scholar 

  56. Lessig V (1972) Comparing cluster analyses with cophenetic correlation. J Mark Res 9:82–84

    Article  Google Scholar 

  57. Levings CD, Jamieson GS (1999) Evaluation of ecological criteria for selecting MPAs in pacific region: a proposed semi-quantitative approach. Can Stock Assess Sec Res Doc. 99/210

  58. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  59. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950

    Article  Google Scholar 

  60. Lombard AT, Cowling RM, Pressey RL, Rebelo AG (2003) Effectiveness of land classes as surrogates for species in conservation planning for the cape floristic region. Biol Cons 112(1–2):45–62

    Article  Google Scholar 

  61. Lucas BG, Verrin S, Brown R (2007) Ecosystem overview: Pacific North Coast Integrated Management Area (PNCIMA). Can Tech Rep Fish Aquat Sci 2667:xiii + 104p

    Google Scholar 

  62. Maloney N Heifetz J 1997 Movements of tagged sablefish, Anoplopoma fimbria, released in the eastern Gulf of AlaskaNOAA Technical Report, NMFS130115121

  63. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  64. McCune B, Grace J (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  65. McFarlane G Saunders M 2006 Dispersion of juvenile sablefish, Anoplopoma fimbria, as indicating by tagging in Canadian watersNOAA Technical Report, NMFS130137150

  66. Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159–179

    Article  Google Scholar 

  67. Nelson TA, Gillanders SN, Harper J, Morris M (2011) Nearshore Aquatic Habitat Monitoring: a seabed imaging and mapping approach. J Coast Res 272:348–355. doi:10.2112/jcoastres-d-10-00110.1

    Article  Google Scholar 

  68. Oksanen J, Guillaume Blanchet F, Kindt R et al (2014) vegan: community ecology package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan

  69. Pimm SL et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187):1246752. doi:10.1126/science.1246752

    CAS  Article  PubMed  Google Scholar 

  70. Pitcher CR, Lawton P, Ellis N et al (2012) Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. J Appl Ecol 49(3):670–679

    Article  Google Scholar 

  71. Podani J, Csányi B (2010) Detecting indicator species: some extensions of the IndVal measure. Ecol Ind 10(6):1119–1124

    Article  Google Scholar 

  72. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  73. Proches S (2005) The world’s biogeographical regions: cluster analyses based on bat distributions. J. Biogeog. 32:607–614

    Article  Google Scholar 

  74. R Core development TEAM 2014 R: a language and environment for statistical computing R foundation for statistical computing Vienna

  75. Robb CK (2014) Assessing the impact of human activities on British Columbia’s estuaries. PLoS One 9:e99578. doi:10.1371/journal.pone.0099578

    Article  PubMed  PubMed Central  Google Scholar 

  76. Roberts CM, Branch G, Bustamante RH et al (2003) Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol Appl 13:S215–S228

    Article  Google Scholar 

  77. Roberts DW (2015) labdsv: ordination and multivariate analysis for ecology. R package version 1.7-0. http://CRAN.R-project.org/package=labdsv

  78. Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf 12:77. doi:10.1186/1471-2105-12-77

    Article  Google Scholar 

  79. Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737. doi:10.1146/annurev.ecolsys.38.091206.095737

    Article  Google Scholar 

  80. Roff JC, Taylor ME (2000) National frameworks for marine conservation—a hierarchical geophysical approach. Aquat Cons Mar Fresh Ecosys 10:209–223

    Article  Google Scholar 

  81. Roff JC, Zacharias MA (2011) Marine conservation ecology. Earthscan, London, UK

    Google Scholar 

  82. Roff JC, Taylor ME, Laughren J (2003) Geophysical approaches to the classification, delineation and monitoring of marine habitats and their communities. Aquat Cons Mar Fresh Ecosys 13(1):77–90

    Article  Google Scholar 

  83. Rooper C, Zimmermann M (2007) A bottom-up methodology for integrating underwater video and acoustic mapping for seafloor substrate classification. Cont Shelf Res 27:947–957

    Article  Google Scholar 

  84. Shumchenia EJ, King JW (2010) Comparison of methods for integrating biological and physical data for marine habitat mapping and classification. Cont Shelf Res 30:1717–1729. doi:10.1016/j.csr.2010.07.007

    Article  Google Scholar 

  85. Sutcliffe PR, Klein CJ, Pitcher CR, Possingham HP (2015) The effectiveness of marine reserve systems constructed using different surrogates of biodiversity. Consr Biol 29(3):657–667

    CAS  Article  Google Scholar 

  86. Tulloch VJ, Possingham HP, Jupiter SD et al (2013) Incorporating uncertainty associated with habitat data in marine reserve design. Biol Cons 162:41–51. doi:10.1016/j.biocon.2013.03.003

    Article  Google Scholar 

  87. Tyberghein L, Verbruggen H, Pauly K et al (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modeling. Global Ecol Biogeog. Available from Supporting information available at http://www.oracle.ugent.be/DATA/Other/Appendix.pdf

  88. Wei T (2013) corrplot: Visualization of a correlation matrix. R package version 0.73. http://CRAN.R-project.org/package=corrplot

  89. Wenger SJ, Som NA, Dauwalter DC et al (2013) Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Glob Chang Biol 19(11):3343–3354

    PubMed  Google Scholar 

  90. Williams PH, de Klerk HM, Crowe TM (1999) Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement. J Biogeog 26:459–474

    Article  Google Scholar 

  91. Worm B, Barbier EB, Beaumont N (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi:10.1126/science.1132294

    CAS  Article  PubMed  Google Scholar 

  92. WoRMS Editorial Board (2015) World register of marine specie. Available from http://www.marinespecies.org at VLIZ. Accessed 15 May 2015

  93. Zacharias MA, Howes DE, Harper JR, Wainwright P (1998) The British Columbia marine ecosystem classification: rationale, development, and verification. Coast Manage 26(2):105–124

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for feedback and discussion from Ed Gregr, Laura Feyrer, Erin McClelland, Greig Oldford, Chris McDougall, Carrie Robb, and Karin Bodtker as well as members of the Canada-British Columbia-First Nations Marine Protected Area Technical Team. The manuscript was greatly improved by two anonymous reviewers. We also would like to thank Kate Rutherford, Leslie Barton, Jason Dunham and others who provided access and answered questions about data sources. Funding for this project was provided by the Canada-British Columbia Marine Protected Area Implementation Team and Fisheries and Oceans Canada’s National Conservation Plan Program and the Strategic Program for Ecosystem Research and Analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emily M Rubidge.

Additional information

Communicated by Angus Jackson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1641 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rubidge, E., Gale, K.S.P. & Curtis, J.M.R. Community ecological modelling as an alternative to physiographic classifications for marine conservation planning. Biodivers Conserv 25, 1899–1920 (2016). https://doi.org/10.1007/s10531-016-1167-x

Download citation

Keywords

  • MPA network
  • Ecological representation
  • Random forest
  • Cluster analysis
  • IndVal