Biodiversity and Conservation

, Volume 25, Issue 8, pp 1515–1528 | Cite as

Resting in risky environments: the importance of cover for wolves to cope with exposure risk in human-dominated landscapes

  • Luis Llaneza
  • Emilio J. García
  • Vicente Palacios
  • Víctor Sazatornil
  • José Vicente López-Bao
Original Paper


Centuries of persecution have influenced the behaviour of large carnivores. For those populations persisting in human-dominated landscapes, complete spatial segregation from humans is not always possible, as they are in close contact with people even when they are resting. The selection of resting sites is expected to be critical for large carnivore persistence in human-dominated landscapes, where resting sites must offer protection to counteract exposure risk. Using wolves (Canis lupus) as a model species, we hypothesised that selection of resting sites by large carnivores in human-dominated landscapes will be not only influenced by human activities, but also strongly determined by cover providing concealment. We studied the fine-scale attributes of 546 wolf resting sites and confronted them to 571 random points in NW Iberia. Half of resting sites (50.8 %) were found in forests (mainly forest plantations, 73.1 %), 43.4 % in scrublands, and only 5.8 % in croplands. Compared to random points, wolves located their resting sites far away from paved and large unpaved roads and from settlements, whereas they significantly selected areas with high availability of horizontal (refuge) and canopy cover. The importance of refuge was remarkably high, with its independent contribution alone being more important than the contribution of all the variables related to human pressure (distances) pooled (51.1 vs 42.8 %, respectively). The strength of refuge selection allowed wolves even to rest relatively close to manmade structures, such as roads and settlements (sometimes less than 200 m). Maintaining high-quality refuge areas becomes an important element to favour the persistence of large carnivores in human-dominated landscapes as well as human-carnivore coexistence, which can easily be integrated in landscape planning.


Resting behaviour Carnivore persistence Canis lupus Refuge Landscape planning Human-wildlife interactions 



We are in debt to the staff of the Regional Government of Galicia (Belén Bris, Rogelio Fernández, Carmen Juliani, Mercedes Robles, Emilio Rosa, Jesús Santamarina, Javier Turrillo). Spatial information from wolves in the study area comes from research Projects funded by DESA S.L. and GAMESA S.L. We thank Enrique Anchústegui (DESA) and Aitziber Céspedes (GAMESA) for their collaboration and support. JVLB was supported by a ‘Juan de la Cierva’ research contract (JCI-2012-13066) from the Spanish Ministry of Economy and Competitiveness. This is scientific paper No. 11 from the Iberian Wolf Research Team (IWRT).

Supplementary material

10531_2016_1134_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4872 kb)


  1. Agarwala M, Khumar S (2009) Wolves in agricultural landscapes in Western India. Trop Resour 28:48–53Google Scholar
  2. Ahmadi M, López-Bao JV, Kaboli M (2014) Spatial heterogeneity in human activities favors persistence of wolves in agroecosystems. PLoS One 9:e108080CrossRefPubMedPubMedCentralGoogle Scholar
  3. Álvares F, Domingues J, Sierra P, Primavera P (2011) Cultural dimension of wolves in the Iberian Peninsula: implications of ethnozoology in conservation biology. Innovation 24:313–331Google Scholar
  4. Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth U (2013) Big cats in our backyards: Persistence of large carnivores in a human-dominated landscape in India. PLoS One 8:e57872CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barton K (2013) MuMIn: multi-model inference. R package version 1.9. 5Google Scholar
  6. Bates D, Maechler M, Bolker B (2014) lme4: Linear mixed-effects models using S4 classes. R package version 0.9-0Google Scholar
  7. Benson JF, Mills KJ, Patterson BR (2015) Resource selection by wolves at dens and rendezvous sites in Algonquin park, Canada. Biol Conserv 182:223–232CrossRefGoogle Scholar
  8. Boitani L (1982) Wolf management in intensively used areas of Italy. In: Harrington FH, Paquet PC (eds) Wolves of the world, perspectives of behaviour, ecology and conservation. Noyes Publishing, Park Ridge, pp 158–172Google Scholar
  9. Boitani L (1995) Ecological and cultural diversities in the evolution of wolf–human relationships. In: Carbyn LN, Fritts SH, Seip DR (eds) Ecology and conservation of wolves in a changing world. Canadian Circumpolar Institute, Edmonton, pp 3–12Google Scholar
  10. Bouyer Y, Gervasi V, Poncin P, Beudels-Jamar RC, Odden J, Linnell JDC (2015) Tolerance to anthropogenic disturbance by a large carnivore: the case of Eurasian lynx in south-eastern Norway. Anim Conserv 18:271–278CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2010) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  12. Capitani C, Mattioli L, Avanzinelli E, Gazzola A, Lamberti P, Mauri L, Scandura M, Viviani A, Apollonio M (2006) Selection of rendezvous sites and reuse of pup raising areas among wolves Canis lupus of north-eastern Apennines, Italy. Acta Theriol 51:395–404CrossRefGoogle Scholar
  13. Carter NH, Shrestha BK, Karki JB, Pradhan NMB, Liu J (2012) Coexistence between wildlife and humans at fine spatial scales. PNAS 109:15360–15365CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chapron et al (2014) Recovery of large carnivores in Europe´s modern human-dominated landscapes. Science 346:1517–1519CrossRefPubMedGoogle Scholar
  15. Chavez AS, Gese EM (2005) Landscape use and movements of wolves in relation to livestock in a wildland–agriculture matrix. J Wildl Manag 70:1079–1086CrossRefGoogle Scholar
  16. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  17. Ciucci P, Boitani L, Francisc F, Andreoli G (1997) Home range, activity and movements of a wolf pack in central Italy. J Zool 243:803–819CrossRefGoogle Scholar
  18. Creel S, Rotella JJ (2010) Meta-analysis of relationships between human offtake, total mortality and population dynamics of Gray wolves (Canis lupus). PLoS One 5:e12918CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cristescu B, Stenhouse GB, Boyce MS (2013) Perception of human-derived risk influences choice at top of the food chain. PLoS One 8:e82738CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cuesta L, Bárcena F, Palacios F, Reig S (1991) The trophic ecology of the Iberian wolf (Canis lupus signatus, Cabrera, 1907). A new analysis of stomach’s data. Mammalia 55:239–254CrossRefGoogle Scholar
  21. Dussault C, Courtois R, Ouellet JP, Huot J (2001) Influence of satellite geometry and differential correction on GPS location accuracy. Wildl Soc B 29:171–179Google Scholar
  22. Fernández JM, De Azúa NR (2010) Historical dynamics of a declining wolf population: persecution vs. prey reduction. Eur J Wildl Res 56:169–179CrossRefGoogle Scholar
  23. Frank LG, Woodroffe R (2001) Behaviour of carnivores in exploited and controlled populations. In: Gittleman JL, Funk SM, Macdonald DW, Wayne RK (eds) Carnivore Conservation. Cambridge University Press, Cambridge, pp 419–442Google Scholar
  24. Gipson PS, Ballard WB, Nowak RM, Mech LD (2000) Accuracy and precision of estimating age of gray wolves by tooth wear. J Wildl Manag 64:752–758CrossRefGoogle Scholar
  25. Glenz C, Massolo D, Kuonen D, Schlaepfer R (2001) A wolf habitat suitability prediction study in Valais (Switzerland). Landsc Urban Plan 55:55–65CrossRefGoogle Scholar
  26. Goodrich JM, Kerley LL, Smirnov EN, Miquelle DG, McDonald L, Quigley HB, Hornocker MG, McDonald T (2008) Survival rates and causes of mortality of Amur tigers on and near the Sikhote-Alin Biosphere Zapovednik. J Zool 276:323–329CrossRefGoogle Scholar
  27. Habib B, Kumar S (2007) Den shifting by wolves in semi-wild landscapes in the Deccan Plateau, Maharashtra, India. J Zool 272:259–265CrossRefGoogle Scholar
  28. Heurich M, Hilger A, Küchenhoff H, Andrén H, Bufka L, Krofel M, Mattison J, Odden J, Persson J, Rauset GR, Schmidt K, Linnell JDC (2014) Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS One 9:e114143CrossRefPubMedPubMedCentralGoogle Scholar
  29. Iliopoulos Y, Youlatos D, Sgardelis S (2014) Wolf pack rendezvous site selection in Greece is mainly affected by anthropogenic landscape features. Eur J Wildl Res 60:23–34CrossRefGoogle Scholar
  30. INE (2014) Instituto Nacional de Estadística. Censo de población y viviendaGoogle Scholar
  31. Jędrzejewski W, Jędrzejewska B, Zawadzka B, Borowik T, Nowak S, Mysłajek RW (2008) Habitat suitability model for Polish wolves based on long-term national census. Anim Conserv 11:377–390CrossRefGoogle Scholar
  32. Karlsson J, Sjöström M (2007) Human attitudes towards wolves, a matter of distance. Biol Conserv 137:610–616CrossRefGoogle Scholar
  33. Kusak J, Skrbinšek AM, Huber D (2005) Home ranges, movements, and activity of wolves (Canis lupus) in the Dalmatian part of Dinarids, Croatia. Eur J Wildl Res 51:254–262CrossRefGoogle Scholar
  34. Latham ADM, Latham MC, Boyce MS, Boutin S (2011) Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol Appl 21:2854–2865CrossRefGoogle Scholar
  35. Liberg O, Chapron G, Wabakken P, Pedersen HC, Hobbs NT, Sand H (2012) Shoot, shovel and shut up: cryptic poaching slows restoration of a large carnivore in Europe. Proc R Soc Lond. 279:910–915CrossRefGoogle Scholar
  36. Lima SL, Rattenborg NC, Lesku JA, Amlaner CJ (2005) Sleeping under the risk of predation. Anim Behav 70:723–736CrossRefGoogle Scholar
  37. Linnell JDC, Andersen R, Andersone Z, Balciauskas L, Blanco JC, Boitani L, Brainerd S, Breitenmoser U, Kojola I, Liberg O, Loe J, Okarma H, Pedersen HC, Promberger C, Sand H, Solberg EJ, Valdman H, Wabakken P (2002) The fear of wolves: a review of wolf attacks on people. NINA Oppdragsmelding 731Google Scholar
  38. Llaneza L, López-Bao JV (2015) Indirect effects of changes in environmental and agricultural policies on the diet of wolves. Eur J Wildl Res 61:895–902CrossRefGoogle Scholar
  39. Llaneza L, Palacios V, Uzal A, Ordiz A, Sazatornil V, Sierra P, Álvares F (2005) Distribución y aspectos poblacionales del lobo ibérico (Canis lupus signatus) en las provincias de Pontevedra y A Coruña. Galemys 17:61–80Google Scholar
  40. Llaneza L, López-Bao JV, Sazatornil V (2012) Insights into wolf presence in human-dominated landscapes: the relative role of food availability, humans and landscape attributes. Diver Dist 18:459–469CrossRefGoogle Scholar
  41. Llaneza L, García EJ, Palacios V, López-Bao JV (2014) Wolf monitoring in Galicia, NW Spain, 2013-2014. Report to TRAGSATEC and the Spanish Ministry of Agriculture, Food, and EnvironmentGoogle Scholar
  42. López-Bao JV, Sazatornil V, Llaneza L, Rodríguez A (2013) Indirect effects on heathland conservation and wolf persistence of contradictory policies that threaten traditional free-ranging horse husbandry. Conserv Lett 6:448–455CrossRefGoogle Scholar
  43. López-Bao JV, Blanco JC, Rodríguez A, Godinho R, Sazatornil V, Álvares F, García EJ, Llaneza L, Rico M, Cortés Y, Palacios V, Chapron G (2015a) Toothless wildlife protection laws. Biodivers Conserv 24:2105–2108CrossRefGoogle Scholar
  44. López-Bao JV, Kaczensky P, Linnell JD, Boitani L, Chapron G (2015b) Carnivore coexistence: wilderness not required. Science 348:870–871CrossRefGoogle Scholar
  45. Lyons AL, Gaines WL, Servheen C (2003) Black bear resource selection in the northeast Cascades, Washington. Biol Conserv 113:55–62CrossRefGoogle Scholar
  46. Mac Nally R (2000) Regression and model building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘‘predictive” and ‘‘explanatory” models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  47. Mac Nally R, Horrocks G (2002) Relative influences of patch, landscape and historical factors on birds in an Australian fragmented landscape. J Biogeogr 29:395–410CrossRefGoogle Scholar
  48. Mech LD, Boitani L (2010) Wolves: behavior, ecology, and conservation: behavior, ecology, and conservation. University of Chicago Press, ChicagoGoogle Scholar
  49. Ministerio de Fomento (1999) Modelo Digital del Terreno 1:25000. Dirección General del Instituto Geografico Nacional, Centro Nacional de Información Geográfica, MadridGoogle Scholar
  50. Moe TF, Kindberg J, Jansson I, Swenson JE (2007) Importance of diel behaviour when studying habitat selection: examples from female Scandinavian brown bears (Ursus arctos). Can J Zool 85:518–525CrossRefGoogle Scholar
  51. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  52. Ordiz A, Støen OG, Delibes M, Swenson JE (2011) Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears. Oecologia 166:59–67CrossRefPubMedGoogle Scholar
  53. Podgórski T, Schmidt K, Kowalczyk R, Gulczyńska A (2008) Microhabitat selection by Eurasian lynx and its implications for species conservation. Acta Theriol 53:97–110CrossRefGoogle Scholar
  54. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  55. Rico M, Torrente JP (2000) Caza y rarificación del lobo en España: investigación histórica y conclusiones biológicas. Galemys 12:163–179Google Scholar
  56. Skaug H, Fournier D, Magnusson A, Nielsen A (2014) Generalized linear mixed models using AD model builder. R Package version 0.8.0Google Scholar
  57. Swenson JE (1999) Does hunting affect the behavior of brown bears in Eurasia? Ursus 11:157–162Google Scholar
  58. Theuerkauf J (2009) What drives wolves: fear or hunger? Humans, diet, climate and wolf activity patterns. Ethology 115:649–657CrossRefGoogle Scholar
  59. Theuerkauf J, Rouys S, Jedrzejewski W (2003) Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland. Can J Zool 81:163–167CrossRefGoogle Scholar
  60. Vilà C, Urios V, Castroviejo J (1995) Observations on the daily activity patterns in the Iberian wolf. In: Carbyn LN, Fritts SH, Seip DR (eds) Ecology and conservation of wolves in a changing world. Occasional Publication No. 35, Canadian Circumpolar Institute, University of Alberta, Edmonton, pp 335–340Google Scholar
  61. Viota M, Rodríguez A, López-Bao JV, Palomares F (2012) Shift in microhabitat use as a mechanism allowing the coexistence of victim and killer carnivore predators. Open J Ecol 2:21612Google Scholar
  62. Walsh C, Mac Nally R (2008) hier. part: Hierarchical partitioning. R package version 1.0.3Google Scholar
  63. Williams CK, Ericsson G, Heberlein TA (2002) A quantitative summary of attitudes toward wolves and their reintroduction (1972-2000). Wild Soc B 30:575–584Google Scholar
  64. Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128CrossRefPubMedGoogle Scholar
  65. Zedrosser A, Steyaert SM, Gossow H, Swenson JE (2011) Brown bear conservation and the ghost of persecution past. Biol Conserv 144:2163–2170CrossRefGoogle Scholar
  66. Zimmermann B, Nelson L, Wabakken P, Sand H, Liberg O (2014) Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav Ecol 25:1353–1364CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Luis Llaneza
    • 1
    • 2
  • Emilio J. García
    • 1
  • Vicente Palacios
    • 1
  • Víctor Sazatornil
    • 3
  • José Vicente López-Bao
    • 4
    • 5
  1. 1.A.RE.NA. Asesores en Recursos NaturalesLugoSpain
  2. 2.Departamento de Bioloxía Celular e Ecoloxía, Facultade de BioloxíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Department of Animal BiologyUniversity of BarcelonaBarcelonaSpain
  4. 4.Research Unit of Biodiversity (UO/CSIC/PA)Oviedo UniversityMieresSpain
  5. 5.Grimsö Wildlife Research StationSwedish University of Agricultural SciencesRiddarhyttanSweden

Personalised recommendations