Biodiversity and Conservation

, Volume 25, Issue 12, pp 2341–2359 | Cite as

Effects of land use and landscape patterns on Orthoptera communities in the Western Siberian forest steppe

  • Sarah WekingEmail author
  • Immo Kämpf
  • Wanja Mathar
  • Norbert Hölzel
Original Paper


Across Western Siberia, land use has changed substantially since the collapse of the Soviet Union in 1991: large cropland areas were abandoned and livestock numbers declined. In recent years these trends have partly been reversed, and an intensification of agricultural management has been observed that is still ongoing. We evaluated the impact of land use, as well as effects of landscape patterns and vegetation structure on Orthoptera communities and discuss them as drivers of community composition, species richness and abundance. We sampled Orthoptera using a box-quadrat on ancient grassland, ex-arable grassland (both including different management types: unmanaged, grazed and mown) and cereal fields. Landscape heterogeneity and composition strongly affected species richness and abundance of Orthoptera. Both were higher in grassland than in cropland, but did not differ significantly between ex-arable and ancient grasslands or different management practices. An Indicator Species Analysis revealed differentiation of Orthoptera communities between all management types. On croplands, the number of adult individuals and nymphs was influenced by the proportion of grassland in the surrounding landscape and tillage practices. Conservation tillage is most likely the key factor allowing Orthoptera to reproduce on croplands. After up to 24 years of succession, Orthoptera communities of ex-arable grasslands can be considered as completely recovered, as differences to ancient grasslands were minimal. Besides the continuation of low-intensity management, conservation strategies for this region should consider landscape composition and support habitat heterogeneity like ecotones with hemi-boreal forests in grassland-dominated landscapes.


Landscape heterogeneity Low-intensity land use Cropland Ex-arable grassland Grasshopper 



We are grateful to Johannes Kamp and four anonymous reviewers for valuable comments on an earlier version of the manuscript. Besides, we thank Johannes Kamp and Andrei Tolstikov for organisation of our stays during the field work in Russia. This work was conducted as part of project SASCHA (‘Sustainable land management and adaptation strategies to climate change for the Western Siberian grain-belt’). We are grateful for funding by the German Government, Federal Ministry of Education and Research within their Sustainable Land Management funding framework (Funding Reference 01LL0906F/D).

Supplementary material

10531_2016_1107_MOESM1_ESM.pdf (701 kb)
Supplementary material 1 (PDF 701 kb)


  1. Baldi A, Kisbenedek T (1997) Orthopteran assemblages as indicators of grassland naturalness in Hungary. Agric Ecosyst Environ 66:121–129. doi: 10.1016/S0167-8809(97)00068-6 CrossRefGoogle Scholar
  2. Batary P, Orcib KM, Baldib A, Kleijnc D, Kisbenedekb T, Erdos S (2007) Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic Appl Ecol 8:280–290. doi: 10.1016/j.baae.2006.03.012 CrossRefGoogle Scholar
  3. Bazelet CS, Samways MJ (2011) Identifying grasshopper bioindicators for habitat quality assessment of ecological networks. Ecol Indica 11:1259–1269. doi: 10.1016/j.ecolind.2011.01.005 CrossRefGoogle Scholar
  4. Bellmann H (2006) Der Kosmos Heuschreckenführer. Die Arten Mitteleuropas sicher bestimmen. Kosmos, StuttgartGoogle Scholar
  5. Boatman ND, Parry HR, Bishop JD, Cuthbertson AGS (2007) Impacts of agricultural change on farmland biodiversity in the UK. In: Hester RE, Harrison RM (eds) Biodiversity under threat. Issues in environmental science and technology, No. 25. The Royal Society of Chemistry, Cambridge, pp 1–32CrossRefGoogle Scholar
  6. Buri P, Arlettaz R, Humbert JY (2013) Delaying mowing and leaving uncut refuges boosts orthopterans in extensively managed meadows: evidence drawn from field-scale experimentation. Agric Ecosyst Environ 181:22–30. doi: 10.1016/j.agee.2013.09.003 CrossRefGoogle Scholar
  7. Davis HN, Currie RS, French BW, Buschman LL (2009) Impact of land management practices on carabids (Coleoptera: Carabidae) and other arthropods on the western high plains of North America. Southwest Entomol 34(1):43–59. doi: 10.3958/059.034.0104 CrossRefGoogle Scholar
  8. Degefie DT, Fleischer E, Klemm O, Tolstikov A, Soromotin A, Soromotin O (2014) Climate extremes in South Western Siberia: past and future. Stoch Environ Res Risk Assess 28:2161–2173. doi: 10.1007/s00477-014-0872-9 CrossRefGoogle Scholar
  9. Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14. doi: 10.1016/j.agee.2013.12.015 CrossRefGoogle Scholar
  10. Didukh YP (2011) The ecological scales for the species of Ukrainian flora and their use in 433 synphytoindication. Phytosociocentre, KievGoogle Scholar
  11. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  12. Dover JW, Spencer S, Collins S, Hadjigeorgiou I, Rescia A (2011) Grassland butterflies and low intensity farming in Europe. J Insect Conserv 15:129–137. doi: 10.1007/s10841-010-9332-0 CrossRefGoogle Scholar
  13. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366Google Scholar
  14. Ermakov N, Dring J, Rodwell J (2000) Classification of continental hemiboreal forests of Northasia. Braun-Blanquetia 28:1–129Google Scholar
  15. Essl F, Dirnböck T (2012) What determines Orthoptera species distribution and richness in temperate semi-natural dry grassland remnants? Biodivers Conserv 21:2525–2537. doi: 10.1007/s10531-012-0315-1 CrossRefGoogle Scholar
  16. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RF, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. doi: 10.1111/j.1461-0248.2010.01559.x PubMedCrossRefGoogle Scholar
  17. Fartmann T, Kraemer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indic 20:337–344. doi: 10.1016/j.ecolind.2012.03.002 CrossRefGoogle Scholar
  18. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 PubMedCrossRefGoogle Scholar
  19. Fonderflick J, Besnard A, Beuret A, Dalmais M, Schatz B (2014) The impact of grazing management on Orthoptera abundance varies over the season in Mediterranean steppe-like grassland. Acta Oecol 60:7–16. doi: 10.1016/j.actao.2014.07.001 CrossRefGoogle Scholar
  20. Gardiner T (2007) Orthoptera of crossfield and headland footpaths in arable farmland. J Orthop Res 16(2):127–133. doi: 10.1665/1082-6467(2007)16[127:OOCAHF]2.0.CO;2 CrossRefGoogle Scholar
  21. Gardiner T, Dover J (2008) Is microclimate important for Orthoptera in open landscapes? J Insect Conserv 12:705–709. doi: 10.1007/s10841-007-9104-7 CrossRefGoogle Scholar
  22. Gardiner T, Hassall M (2009) Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J Insect Conserv 13:97–102. doi: 10.1007/s10841-007-9129-y CrossRefGoogle Scholar
  23. Gardiner T, Hill J (2006) A comparison of three sampling techniques used to estimate population density and assemblage diversity of Orthoptera. J Orthop Res 15:45–51. doi: 10.1665/1082-6467(2006)15[45:ACOTST]2.0.CO;2 CrossRefGoogle Scholar
  24. Gardiner T, Pye M, Field R, Hill J (2002) The influence of sward height and vegetation composition in determining the habitat preferences of three Chorthippus species (Orthoptera: Acrididae) in Chelmsford, Essex, UK. J Orthoptera Res 11:207–213. doi: 10.1665/1082-6467(2002)011[0207:TIOSHA]2.0.CO;2 CrossRefGoogle Scholar
  25. Gardiner T, Gardiner M, Hill J (2005) The effect of pasture improvement and burning on Orthoptera populations of Culm grasslands in northwest Devon, UK. J Orthoptera Res 14:153–159. doi: 10.1665/1082-6467(2002)011[0207:TIOSHA]2.0.CO;2 CrossRefGoogle Scholar
  26. Gonthier DJ, Ennis KK, Farinas S, Hsieh HY, Iverson AL, Batary P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281:20141358. doi: 10.1098/rspb.2014.1358 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hochkirch A (2014) Gampsocleis glabra. The IUCN Red List of Threatened Species. Version 2014.3. Downloaded on 5 Mar 2015
  28. Humbert JY, Ghazoul J, Richner N, Walter T (2012) Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol Conserv 152:96–101. doi: 10.1016/j.biocon.2012.03.015 CrossRefGoogle Scholar
  29. IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, ArmonkGoogle Scholar
  30. Jerrentrup JS, Wrage-Mönnig N, Röver KU, Isselstein J (2014) Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J Appl Ecol 51:968–977. doi: 10.1111/1365-2664.12244 CrossRefGoogle Scholar
  31. Kamp J, Urazaliev R, Donald P, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614. doi: 10.1016/j.biocon.2011.07.010 CrossRefGoogle Scholar
  32. Kämpf I, Mathar W, Kuzmin I, Hölzel N, Kiehl K (2016) Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodivers Conserv. doi: 10.1007/s10531-016-1078-x (this SI) Google Scholar
  33. Kleijn D, Sutherland DJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969. doi: 10.1111/j.1365-2664.2003.00868.x CrossRefGoogle Scholar
  34. Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of Orthoptera, butterflies and trapnesting bees and wasps. Conserv Biol 16:1570–1580. doi: 10.1046/j.1523-1739.2002.01334.x CrossRefGoogle Scholar
  35. Kühling I, Broll G, Trautz D (2016) Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Sci Total Environ 544:271–280. doi: 10.1016/j.scitotenv.2015.11.129 PubMedCrossRefGoogle Scholar
  36. Littlewood NA, Stewart AJA, Woodcock BA (2012) Science into practice—how can fundamental science contribute to better management of grasslands for invertebrates? Insect Conserv Divers 5:1–8. doi: 10.1111/j.1752-4598.2011.00174.x CrossRefGoogle Scholar
  37. Manetti P, Faberi AJ, Clemente NL, López AN (2013) Macrofauna activity density in contrasting tillage systems in Buenos Aires Province, Argentina. Agron J 105(6):1780–1786. doi: 10.2134/agronj2013.0129 CrossRefGoogle Scholar
  38. Marini L, Fontana P, Scotton M, Klimek S (2008) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370. doi: 10.1111/j.1365-2664.2007.01402.x CrossRefGoogle Scholar
  39. Marini L, Fontana P, Battisti A, Gaston KJ (2009a) Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland–forest mosaic: a multi-scale approach. Insect Conserv Divers 2:213–220. doi: 10.1111/j.1752-4598.2009.00053.x CrossRefGoogle Scholar
  40. Marini L, Fontana P, Battisti A, Gaston KJ (2009b) Response of orthopteran diversity to abandonment of semi-natural meadows. Agric Ecosyst Environ 132:232–236. doi: 10.1016/j.agee.2009.04.003 CrossRefGoogle Scholar
  41. Marshall EJP, West TM, Kleijn D (2006) Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric Ecosyst Environ 113:36–44. doi: 10.1016/j.agee.2005.08.036 CrossRefGoogle Scholar
  42. Mathar WP, Kämpf I, Kleinebecker T, Kuzmin I, Tolstikov A, Tupitsin S, Hölzel N (2016) Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodivers Conserv. doi: 10.1007/s10531-015-1023-4 (this SI) Google Scholar
  43. McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data, Version 5.0 for Windows. MjM Software, Gleneden BeachGoogle Scholar
  44. Oliver T, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484. doi: 10.1111/j.1461-0248.2010.01441.x PubMedCrossRefGoogle Scholar
  45. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2004) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
  46. Plieninger T, Höchtl F, Spek T (2006) Traditional land-use and nature conservation in European rural landscapes. Environ Sci Policy 9:317–321. doi: 10.1016/j.envsci.2006.03.001 CrossRefGoogle Scholar
  47. Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur J Entomol 105:659–671. doi: 10.14411/eje.2008.090 CrossRefGoogle Scholar
  48. Poniatowski D, Defaut B, Llucia-Pomares D, Fartmann T (2009) The Orthoptera fauna of the Pyrenean region—a field guide. Articulata Beiheft 14:1–143Google Scholar
  49. Poschlod P, Bakker JP, Kahmen J (2005) Changing land use and its impact on biodiversity. Basic Appl Ecol 6:93–98. doi: 10.1016/j.baae.2004.12.001 CrossRefGoogle Scholar
  50. Racz IA, Deri E, Kisfali M, Batiz Z, Varga K, Szabo G, Lengyel S (2013) Early changes of orthopteran assemblages after grassland restoration: a comparison of space-fortime substitution versus repeated measures monitoring. Biodivers Conserv 22:2321–2335. doi: 10.1007/s10531-013-0466-8 CrossRefGoogle Scholar
  51. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  52. Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not widespread species: the Orthoptera of Germany. Ecography 28:593–602. doi: 10.1111/j.2005.0906-7590.04285.x CrossRefGoogle Scholar
  53. Ruprecht E (2006) Successfully recovered grassland: a promising example from Romanian old-fields. Restor Ecol 14:473–480. doi: 10.1111/j.1526-100X.2006.00155.x CrossRefGoogle Scholar
  54. Schierhorn F, Muller D, Beringer T, Prishchepov AV, Kuemmerle T, Balmann A (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob Biogeochem Cycles 27:1175–1185. doi: 10.1002/2013GB004654 CrossRefGoogle Scholar
  55. Selezneva NS (1973) Forest steppe. In: Gwosdezkji NA (ed) Physical geographical zoning of Tyumen Oblast. Moscow University Press, Moscow, pp 144–174Google Scholar
  56. Smelansky I, Tishkov A (2012) The steppe biome in Russia: ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 45–101CrossRefGoogle Scholar
  57. Stoate C, Baldi A, Beja P, Boatman ND, Herzon I, Van Doorn A, De Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46. doi: 10.1016/j.jenvman.2009.07.005 CrossRefGoogle Scholar
  58. Sutcliffe LME, Batary P, Becker T, Orci KM, Leuschner C (2015) Both local and landscape factors determine plant and Orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodivers Conserv 24:229–245. doi: 10.1007/s10531-014-0804-5 CrossRefGoogle Scholar
  59. Szijj J (2004) Die Springschrecken Europas. Neue Brehm-Bücherei 652, Westarp Wissenschaften, HohenwarslebenGoogle Scholar
  60. ter Braak JF, Smilauer P (1997–2013) Canoco 5—software for multivariate data exploration, testing and summarization. Biometris, Plant Research International, The NetherlandsGoogle Scholar
  61. Tonhasca A Jr (1994) Response of soybean herbivores to two agronomic practices increasing agroecosystem diversity. Agric Ecosyst Environ 48:57–65CrossRefGoogle Scholar
  62. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  63. Tscharntke T, Tylianakis JM, Trand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685. doi: 10.1111/j.1469-185X.2011.00216.x PubMedCrossRefGoogle Scholar
  64. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, DordrechtCrossRefGoogle Scholar
  65. Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178. doi: 10.1007/s10531-012-0398-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sarah Weking
    • 1
    Email author
  • Immo Kämpf
    • 1
    • 2
  • Wanja Mathar
    • 1
  • Norbert Hölzel
    • 1
  1. 1.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  2. 2.Vegetation Ecology and BotanyUniversity of Applied Sciences OsnabrückOsnabrückGermany

Personalised recommendations