Skip to main content

Advertisement

Log in

Conserving a variety of ancient forest patches maintains historic arthropod diversity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Forests are naturally extensive tracts. However, in South Africa natural fires over many millennia have reduced forested areas into small remnants spread throughout a grassland matrix. Small patches, especially distant patches, are generally considered to be adverse for forest specialists, owing to decreased forest interior and increased edge. Here we test this assumption by determining the impact of forest interpatch distance and patch size on epigaeic arthropod diversity in this globally rare vegetation type. Forty patches were selected: ten large (100–435 m diameter) that are distant (500–645 m) from other patches, ten large that are close to other patches (38–97 m), ten small (30–42 m) that are distant, and ten small-close patches. Each patch had two plots: edge and interior. Arthropods were sampled using pitfall traps, Berlese-Tullgren funnels and active searches. Interiors and edges had similar species richness and composition, excluding spiders, which were richer in interiors. Patch size significantly influenced species richness of predatory beetles and arthropod assemblages, excluding spiders. Effect of the interaction between patch size and interpatch distance on species richness and composition varied among taxa. Furthermore, large patches supported similar assemblages regardless of interpatch distance. Arthropod response, particularly ants to patch size and interpatch distance, was partly shaped by the matrix type. The percentage of surrounding grassland had little effect on arthropod diversity. We can conclude that large and close patches are important for arthropod conservation. Nevertheless, it is also important to conserve a variety of patch sizes at various distances to maximize overall arthropod composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x

    Article  PubMed  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Araujo LS, Komonen A, Lopes-Andrade C (2015) Influences of landscape structure on diversity of beetles associated with bracket fungi in Brazilian Atlantic forest. Biol Conserv 191:659–666. doi:10.1016/j.bicon.2015.08.026

    Article  Google Scholar 

  • Berndt LA, Brockerhoff EG, Jactel H (2008) Relevence of exotic pine plantations as a surrogate habitat for ground beetles (Carabidae) where native forest is rare. Biodivers Conserv 17:1171–1185. doi:10.1007/s10531-008-9379-3

    Article  Google Scholar 

  • Bolger DT, Beard KH, Suarez AV, Case TJ (2008) Increased abundance of native and non-native spiders with habitat fragmentation. Divers Distrib 14:655–665. doi:10.1111/j.1472-4642.2008.00470.x

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Bond WJ, Parr CL (2010) Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Conserv 143:2395–2404. doi:10.1016/j.biocon.2009.12.012

    Article  Google Scholar 

  • Brühl CA, Eltz T, Linsenmair KE (2003) Size does matter—effects of tropical rainforest fragmentation on the leaf litter ant community in Sabah, Malaysia. Biodivers Conserv 12:1371–1389. doi:10.1023/A:1023621609102

    Article  Google Scholar 

  • Burns KC, McHardy RP, Pledger S (2009) The small-island effect: fact or artefact. Ecography 32:269–276. doi:10.1111/j.1600-0587.2008.05565.x

    Article  Google Scholar 

  • Cameron KH, Leather SR (2012) How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundance and order richness. Biodivers Conserv 21:763–779. doi:10.1007/s10531-011-0215-9

    Article  Google Scholar 

  • Cobbold SM, MacMahon JA (2012) Guild mobility affects spider diversity: links between foraging behaviour and sensitivity to adjacent vegetation structure. Basic Appl Ecol 13:597–605. doi:10.1016/j.baae.2012.08.014

    Article  Google Scholar 

  • Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68:295–323

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling D, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  • Duelli P, Obrist MK, Schmatz DR (1999) Biodiversity evaluation in agricultural landscapes: above ground insects. Agric Ecosyst Environ 74:33–64. doi:10.1016/S0167-8809(99)00029-8

    Article  Google Scholar 

  • Echeverría C, Newton AC, Lara A, Benayas JMR, Coomes DA (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob Ecol Biogeogr 16:426–439. doi:10.1111/j.1466-8238.2007.00311.x

    Article  Google Scholar 

  • Eeley HAC, Lawes MJ, Piper SE (1999) The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. J Biogeogr 26:595–617. doi:10.1046/j.1365-2699.1999.00307.x

    Article  Google Scholar 

  • Evans AM, Clinton PW, Allen RB, Frampton CM (2003) The influence of logs on the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. For Ecol Manag 184:251–262. doi:10.1016/S0378-1127(03)00158-0

    Article  Google Scholar 

  • Eversham BC, Roy DB, Telfer MG (1996) Urban, industrial and other manmade sites as anologues of natural habitats for Carabidae. Ann Zool Fennici 31:149–156

    Google Scholar 

  • Filgueiras BKC, Iannuzzi L, Leal IR (2011) Habitat fragmentation alters the structure of dung beetle communities in the Atlantic forest. Biol Conserv 144:362–369. doi:10.1016/j.biocon.2010.09.013

    Article  Google Scholar 

  • Finér L, Jurgensen MF, Domisch T, Kilpeläinen J, Neuvonen S, Punttila P, Risch AC, Ohashi M, Niemelä P (2013) The role of wood ants (Formica rufa group) in carbon and nutrient dynamics of a boreal Norway spruce forest ecosystem. Ecosystems 16:196–208. doi:10.1007/s10021-012-9608-1

    Article  Google Scholar 

  • Fischer C, Schlinkert H, Ludwig M, Holzschuh A, Gallé R, Tscharntke T, Batáry P (2013) The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. J Insect Conserv 17:1027–1038. doi:10.1007/s10841-013-9586-4

    Article  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard RO Jr, Malcom JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229. doi:10.1016/S0006-3207(99)00080-4

    Article  Google Scholar 

  • Gerlach J, Samways MJ, Pryke JS (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850. doi:10.1007/s10841-013-9565-9

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100. doi:10.1016/S0006-3207(01)00232-4

    Article  Google Scholar 

  • Gibb H, Durant B, Cunningham SA (2012) Arthropod colonisation of natural and experimental logs in an agricultural landscape: effects of habitat, isolation, season and exposure time. Ecol Manag Restor 13:166–175. doi:10.1111/j.1442-8903.2012.00638.x

    Article  Google Scholar 

  • Gonçalves-Souza BT, Matallana G, Brescovit AD (2008) Effects of habitat fragmentation on the spider community (Arachnida, Araneae) in three Atlantic forest remnants in Southeastern Brazil. Rev Ibér Aracnol 16:35–42

    Google Scholar 

  • Gove AD, Majer JD, Rico-Gray V (2009) Ant assemblages in isolated trees are more sensitive to species loss and replacement than their woodland counterparts. Basic Appl Ecol 10:187–195. doi:10.1016/j.baae.2008.02.005

    Article  Google Scholar 

  • Gunther MJ, New TR (2003) Exotic pine plantations in Victoria, Australia: a threat to epigaeic beetles (Coleoptera) assemblages. J Insect Conserv 7:73–84. doi:10.1023/A:1025594022759

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49. doi:10.1038/23876

    Article  CAS  Google Scholar 

  • Heliölä J, Koivula M, Niemelä J (2001) Distribution of carabid beetles (Coleoptera, Carabidae) across a boreal forest-clearcut ecotone. Conserv Biol 15:370–377. doi:10.1046/j.1523-1739.2001.015002370.x

    Article  Google Scholar 

  • Horváth R, Magura T, Péter G, Tóthmérész B (2002) Edge effect on weevils and spiders. Web Ecol 3:43–47. doi:10.5194/we-3-43-2002

    Article  Google Scholar 

  • Hudewenz A, Klein AM, Scherber C, Stanke L, Tscharntke T, Vogel A, Weigelt A, Weisser WW, Ebeling A (2012) Herbivore and pollinator responses to grassland management intensity along experimental changes in plant species richness. Biol Conserv 150:42–52. doi:10.1016/j.biocon.2012.02.024

    Article  Google Scholar 

  • Jacquemyn H, Butaye J, Hermy M (2001) Forest plant species richness in small, fragmented mixed deciduous forest patches: the role of area, time and dispersal limitation. J Biogeogr 28:801–812. doi:10.1046/j.1365-2699.2001.00590.x

    Article  Google Scholar 

  • Jokimäki J, Huhta E, Itämies J, Rahko P (1998) Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Can J For Res 28:1068–1072. doi:10.1139/x98-074

    Article  Google Scholar 

  • Kacholi DS (2014) Edge-interior disparities in tree species and structural composition of the Kilengwe forest in Morogoro region, Tanzania. ISRN Biodivers 2014:1–9. doi:10.1155/2014/873174

    Article  Google Scholar 

  • Kotze DJ, Lawes MJ (2007) Viability of ecological processes in small Afromontane forest patches in South Africa. Austral Ecol 32:294–304. doi:10.1111/j.1442-9993.2007.01694.x

    Article  Google Scholar 

  • Kotze DJ, Samways MJ (1999) Support for the multi-taxa approach in biodiversity assessment, as shown by epigaeic invertebrates in an Afromontane forest archipelago. J Insect Conserv 3:125–143. doi:10.1023/A:1009660601372

    Article  Google Scholar 

  • Kwon TS, Park YK, Lim JH, Ryou SH, Lee CM (2013) Change of arthropod abundance in burned forests: different patterns according to functional guilds. J Asia Pac Entomol 16:321–328. doi:10.1016/j.aspen.2013.04.008

    Article  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744. doi:10.1016/j.biocon.2008.05.011

    Article  Google Scholar 

  • Lawes MJ, Kotze DJ, Bourquin SL, Morris C (2005) Epigaeic invertebrates as potential ecological indicators of Afromontane forest condition in South Africa. Biotropica 37:109–118. doi:10.1111/j.1744-7429.2005.04054.x

    Article  Google Scholar 

  • Leal IR, Filgueiras BKC, Gomes JP, Iannuzzi L, Andersen AN (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21:1687–1701. doi:10.1007/s10531-012-0271-9

    Article  Google Scholar 

  • Losos JB, Ricklefs RE (2010) The theory of island biogeography revisited. Princeton University Press, Princeton

    Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Magura T, Bogyó D, Mizser S, Nagy DD, Tóthmérész B (2015) Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. For Ecol Manag 339:117–126. doi:10.1016/j.foreco.2014.12.015

    Article  Google Scholar 

  • Mäki-Petäys H, Zakharov A, Viljakainen L, Corander J, Pamilo P (2005) Genetic changes associated to declining populations of Formica ants in fragmented forest landscape. Mol Ecol 14:733–742. doi:10.1111/j.1365-294X.2005.02444.x

    Article  PubMed  Google Scholar 

  • Mitchell CE, Turner MG, Pearson SM (2002) Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecol Appl 12:1364–1377. doi:10.2307/3099977

    Article  Google Scholar 

  • Miyashita T, Shinkai A, Chida T (1998) The effects of forest fragmentation on web spider communities in urban areas. Biol Conserv 86:357–364. doi:10.1016/S0006-3207(98)00025-1

    Article  Google Scholar 

  • Moreno ML, Fernández MG, Molina SI, Valladares G (2013) The role of small woodland remnants on ground dwelling insect conservation in Chaco Serrano, Central Argentina. J Insect Sci 13:1–13. doi:10.1673/031.013.4001

    Article  Google Scholar 

  • Niemelä J, Koivula M, Kotze DJ (2007) The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J Insect Conserv 11:5–18. doi:10.1007/s10841-006-9014-0

    Article  Google Scholar 

  • Perner J, Schueler S (2004) Estimating the density of ground dwelling arthropods with pitfall traps using a nested-cross array. J Anim Ecol 73:469–477. doi:10.1111/j.0021-8790.2004.00821.x

    Article  Google Scholar 

  • Peter F, Berens DG, Farwig N (2014) Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale. PLoS ONE 9:1–8. doi:10.1371/journal.pone.0095551

    Google Scholar 

  • Pryke JS, Samways MJ (2012) Conservation management of complex natural forest and plantation edge effects. Landsc Ecol 27:73–85. doi:10.1007/s10980-011-9668-1

    Article  Google Scholar 

  • Renker CP, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microb Ecol 50:518–528. doi:10.1007/s00248-005-5017-8

    Article  CAS  PubMed  Google Scholar 

  • Russell JC, Gleeson DM, Corre ML (2011) Subjecting the theory of small-island effect to Ockham’s razor. J Biogeogr 38:1834–1839. doi:10.1111/j.1365-2699.2011.02574.x

    Article  Google Scholar 

  • Samways MJ, McGeoch MA, New TR (2010) Insect conservation: a handbook of approaches and methods. Oxford University Press, Oxford

    Google Scholar 

  • Sfenthourakis S, Triantis KA (2009) Habitat diversity, ecological requirements of species and the small island effect. Divers Distrib 15:131–140. doi:10.1111/j.1472-4642.2008.00526.x

    Article  Google Scholar 

  • Soga M, Kanno N, Yamaura Y, Koike S (2013) Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J Insect Conserv 17:421–428. doi:10.1007/s10841-012-9524-x

    Article  Google Scholar 

  • Team RC (2015) R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2012). http://www.R-project.org

  • Triantis KA, Vardinoyannis K, Tsolaki EP, Botsaris I, Lika K, Mylonas M (2006) Re-approaching the small island effect. J Biogeogr 33:914–923. doi:10.1111/j.1365-2699.2006.01464.x

    Article  Google Scholar 

  • Uys C, Hamer M, Slotow R (2009) Turnover in flightless invertebrate species composition over different spatial scales in Afrotemperate forest in the Drakensberg, South Africa. Afr J Ecol 47:341–351. doi:10.1111/j.1365-2028.2008.00968.x

    Article  Google Scholar 

  • Vandergast AG, Gillespie RG (2004) Effects of natural forest fragmentation on a Hawaiian spider community. Environ Entomol 33:1296–1305. doi:10.1603/0046-225X-33.5.1296

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Vialatte A, Bailey RI, Vasseur C, Matocq A, Gossner MM, Everhart D, Vitrac X, Belhadj A, Ernoult A, Prinzing A (2010) Phylogenetic isolation of host trees affects assembly of local Heteroptera communities. Proc R Soc B Biol Sci 282:1–10. doi:10.1098/rspb.2010.0365

    Google Scholar 

  • Wethered R, Lawes MJ (2005) Nestedness of bird assemblages in fragmented Afromontane forest: the effect of plantation forestry in the matrix. Biol Conserv 123:125–137. doi:10.1016/j.biocon.2004.10.013

    Article  Google Scholar 

  • Yekwayo I, Pryke JS, Roets F, Samways MJ (2016) Surrounding vegetation matters for arthropods of small, natural patches of indigenous forest. Insect Conserv Divers. doi:10.1111/icad.12160

    Google Scholar 

  • Yu XD, Luo TH, Zhou HZ (2014) Composition and distribution of ground-dwelling beetles among oak fragments and surrounding pine plantations in a temperate forest of North China. Insect Sci 21:114–124. doi:10.1111/1744-7917.12039

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mondi for access to plantations, and the National Research Foundation and the Department of Science and Technology (NRF/DST) for funding the project. We also thank J. van Schalkwyk, N. Yekwayo and G. Kietzka for assistance with field work, and A.S. Dippenaar-Schoeman, R. Gaigher, L. Hugo-Coetzee and D. Saccaggi for help with species identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inam Yekwayo.

Additional information

Communicated by Nigel E. Stork.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yekwayo, I., Pryke, J.S., Roets, F. et al. Conserving a variety of ancient forest patches maintains historic arthropod diversity. Biodivers Conserv 25, 887–903 (2016). https://doi.org/10.1007/s10531-016-1096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1096-8

Keywords

Navigation