Biodiversity and Conservation

, Volume 25, Issue 4, pp 739–752 | Cite as

Assessing species traits and landscape relationships of the mammalian carnivore community in a neotropical biological corridor

  • Lain E. Pardo Vargas
  • Michael V. Cove
  • R. Manuel Spinola
  • Juan Camilo de la Cruz
  • Joel C. Saenz
Original Paper

Abstract

Mammalian carnivores play an important role in regulating food webs and ecosystems. While many carnivore populations are facing various threats such as habitat loss and fragmentation, poaching, and illegal trade, others have adapted to human-dominated landscapes. Information about Neotropical carnivore communities in particular is limited, especially in disturbed landscapes. We conducted a camera trap survey at 38 sites across the San Juan–La Selva Biological Corridor in Costa Rica to assess occupancy and detection probabilities of the carnivore community. We developed hypotheses within a likelihood-based framework in order to determine the landscape features and species traits (diet and size) that influenced their occupancy. We detected nine of the 13 native carnivores predicted to occur in the corridor. When modeled separately, each species responded to land cover changes differently, suggesting no strong community-wide predictors of occupancy. We then modeled three separate guilds within the carnivore community: omnivorous mesopredators, obligate carnivorous mesopredators, and apex predators. These community guild models revealed a negative relationship between omnivorous mesopredators and increasing forest and tree plantation cover, suggesting omnivores utilize forest fragments and edge habitats in agricultural landscapes. Obligate carnivorous mesopredator models did not reveal any strong habitat relationships, but landscape effects tended to contradict our a priori predictions. Apex predators were positively associated with increasing forest and tree plantation cover, protected areas, and increasing distances to villages. Alarmingly, apex predators and obligate carnivorous mesopredators were generally rare within the biological corridor. A lack of top-down control alone might result in heightened occupancy for all mesopredators, but because the community is dominated by omnivorous species, bottom-up release from human-induced land cover changes and resource provision may better explain their high occupancy.

Keywords

Biological corridor Camera traps Carnivores Occupancy models Omnivores Mesopredators 

Supplementary material

10531_2016_1089_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 41 kb)

References

  1. Ahumada JA, Silva CE, Gajapersad K, Hallam C, Hurtado J, Martin E, McWilliam A, Mugerwa B, O’Brien T, Rovero F, Sheil D (2011) Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos Trans R Soc B Biol Sci 366(1578):2703–2711CrossRefGoogle Scholar
  2. Bruner AG, Gullison RE, Rice RE, Fonseca GA (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128CrossRefPubMedGoogle Scholar
  3. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, BerlinGoogle Scholar
  4. Cardillo M, Purvis A, Sechrest W, Gittleman J, Bielby J, Mace G (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2(7):909–914CrossRefGoogle Scholar
  5. Carrillo E, Fuller TK, Saenz JC (2009) Jaguar (Panthera onca) hunting activity: effects of prey distribution and availability. J Trop Ecol 25(05):563–567CrossRefGoogle Scholar
  6. Chassot O, Monge G (2002) Corredor Biológico San Juan–La Selva: Ficha técnica. Centro Científico Tropical, San JoséGoogle Scholar
  7. Corrales-Gutiérrez D, Carazo-Salazar J, Salom Pérez R (2011) Validación de campo del Corredor Biológico San Juan–La Selva: evaluación de la presencia del Jaguar y sus principales presas. Informe técnico. Fundación Panthera, Costa RicaGoogle Scholar
  8. Cove MV, Jones BM, Bossert AJ, Clever DR Jr, Dunwoody RK, White BC, Jackson VL (2012a) Use of camera traps to examine the mesopredator release hypothesis in a fragmented Midwestern landscape. Am Midl Nat 168(2):456–465CrossRefGoogle Scholar
  9. Cove MV, Pardo L, Spínola RM, Jackson VL, Saenz JC (2012b) Coyote Canis latrans (Carnivora: Canidae) range extension in northeastern Costa Rica: possible explanations and consequences. Latin Am J Conserv 3(1):82–86Google Scholar
  10. Cove MV, Spínola RM, Jackson VL, Saenz JC, Chassot O (2013) Integrating occupancy modeling and camera-trap data to estimate medium and large mammal detection and richness in a Central American biological corridor. Trop Conserv Sci 6(6):781–795Google Scholar
  11. Cove MV, Spinola RM, Jackson VL, Saenz JC (2014a) The role of fragmentation and landscape changes in the ecological release of common nest predators in the Neotropics. PeerJ 2:e464. doi:10.7717/peerj.464 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cove MV, Spinola RM, Jackson VL, Saenz JC (2014b) Camera trapping ocelots: an evaluation of felid attractants. Hystrix Ital J Mammal 25(2):113–116Google Scholar
  13. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16(2):488–502CrossRefGoogle Scholar
  14. Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecol Lett 10(3):197–206CrossRefPubMedGoogle Scholar
  15. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR et al (2011) Trophic downgrading of planet Earth. Science 333:301–306CrossRefPubMedGoogle Scholar
  16. Fagan ME, DeFries RS, Sesnie SE, Arroyo JP, Walker W, Soto C, Chazdon RL, Sanchun A (2013) Land cover dynamics following a deforestation ban in northern Costa Rica. Environ Res Lett 8(3):034017CrossRefGoogle Scholar
  17. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515CrossRefGoogle Scholar
  18. Garrott RA, White PJ, Vanderbilt White CA (1993) Overabundance: an issue for conservation biologists? Conserv Biol 7(4):946–949CrossRefGoogle Scholar
  19. Guariguata MR, Arias- Le Claire H, Jones G (2002) Tree seed fate in a logged and fragmented forest landscape, Northeastern Costa Rica. Biotropica 34(3):405–415CrossRefGoogle Scholar
  20. Haddad NM (2015) Corridors for people, corridors for nature. Science 350(6265):1166–1167CrossRefPubMedGoogle Scholar
  21. Hines JE (2006) PRESENCE-Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html
  22. Johns A (1985) Selective logging and wildlife conservation in tropical rain forest: problems and recommendations. Biol Conserv 31:355–375CrossRefGoogle Scholar
  23. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance S, Sampaio E (2002) Ecosystem decay of Amazonian forests fragments: a 22 year investigation. Conserv Biol 16:605–618CrossRefGoogle Scholar
  24. Layman CA, Giery ST, Buhler S, Rossi R, Penland T, Henson MN, Bogdanoff AK, Cove MV, Irizarry AD, Schalk CM, Archer SK (2015) A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4:14–24CrossRefGoogle Scholar
  25. Linkie M, Dinata Y, Nugroho A, Haidir I (2007) Estimating occupancy of a data deficient mammalian species living in tropical rainforests: Sun bears in the Kerinci Seblat region, Sumatra. Biol Conserv 137(1):20–27CrossRefGoogle Scholar
  26. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  27. MacKenzie D, Nichols JD, Royle JA, Pollock K, Bailey L, Hines J (2006) Occupancy Estimation and modeling: Inferring patterns and dynamics of species occupancy. Academic Press, New YorkGoogle Scholar
  28. Maffei L, Cuéllar E, Noss AJ (2002) Uso de trampas-cámara para la evaluación de mamíferos en el ecotono chaco-chiquitanía. Rev Bol Ecol 11:55–65Google Scholar
  29. Michalski F, Peres C (2007) Disturbance-mediated mammal persistence and abundance-area relationships in amazonian forest fragments. Conserv Biol 21(6):1626–1640PubMedGoogle Scholar
  30. Murcia C (1995) Edge effect in fragmented forest: implications for conservation. TREE 10(2):58–62PubMedGoogle Scholar
  31. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefPubMedGoogle Scholar
  32. Noss RF, Quigley HB, Hornocker MG, Merrill T, Paquet PC (1996) Conservation biology and carnivore conservation in the Rocky Mountains. Wildl Res 10(4):949–963Google Scholar
  33. Pardini R, Marques de Souza S, Braga-Neto R, Metzger J (2005) The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol Conserv 124:253–266CrossRefGoogle Scholar
  34. Pardo L, Payán E (2015) Mamíferos de un agropaisaje de palma de aceite en las sabanas inundables de Orocué, Casanare, Colombia. Biota Colomb 16(1):54–66Google Scholar
  35. Pearce DW, Putz F, Vanclay JK (2003) Sustainable forestry in the tropics: panacea or folly? For Ecol Manag 172(2–3):229–247CrossRefGoogle Scholar
  36. Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998CrossRefPubMedGoogle Scholar
  37. Rodríguez-Herrera B, Chinchilla F, May-collado L (2002) Lista de especies, endemismo y conservación de los de mamíferos de Costa Rica. Revista Mexicana de Mastozoología 6:19–41Google Scholar
  38. Roemer GW, Gompper ME, Valkenburgh BV (2009) The ecological role of the mammalian mesopredator. Bioscience 59(2):165–173CrossRefGoogle Scholar
  39. Rosenberg DK, Noon BR, Meslow EC (1997). Biological corridors: form, function, and efficacy. BioScience 47(10):677–687Google Scholar
  40. Ruiz-Gutiérrez V, Zipkin EF, Dhondt AA (2010) Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species. J Appl Ecol 47(3):621–630CrossRefGoogle Scholar
  41. Salom-Pérez R, Carrillo E, Sáenz JC, Mora JM (2007) Critical condition of the jaguar Panthera onca population in Corcovado National Park, Costa Rica. Oryx 41(01):51–56CrossRefGoogle Scholar
  42. Schank C, Mendoza E, Vettorazzi MJG, Cove MV, Jordan CA, O‘Farrill G, Meyer N, Lizcano DJ, Estrada N, Poot C, Leonardo R (2015) Integrating current range-wide occurrence data with species distribution models to map the potential distribution of Baird’s Tapir. Tapir Conserv 24(33):15–25Google Scholar
  43. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230CrossRefPubMedGoogle Scholar
  44. Soulé M, Boger D, Alberts A, Wright J, Sorice M, Hill S (1988) Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv Biol 2(1):75–92CrossRefGoogle Scholar
  45. Terborgh J (1988) The big thing that run the world: a sequel to E.O. Wilson. Conserv Biol 2:402–403CrossRefGoogle Scholar
  46. Terborgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24(2):283–292CrossRefGoogle Scholar
  47. Thornton D, Zeller K, Rondinini C, Boitani L, Crooks KR, Burdett C, Rabinowitz A, Quigley A (2015). Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol Appl. doi:10.1890/15-0602.1
  48. Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large and medium sized terrestrial rainforest mammals. Anim Conserv 11:169–178CrossRefGoogle Scholar
  49. Wainwright M (2002) The natural history of Costa Rican mammals. Zona Tropical, San JoseGoogle Scholar
  50. Woodroffe R, Ginsberg J (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centre for Tropical Environmental and Sustainability Science (TESS), College of Marine and Environmental SciencesJames Cook UniversityCairnsAustralia
  2. 2.Instituto Internacional en Conservación y Manejo de Vida SilvestreUniversidad NacionalHerediaCosta Rica
  3. 3.Department of Applied EcologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations