Biodiversity and Conservation

, Volume 25, Issue 4, pp 633–651 | Cite as

Effects of plant hybridization on the structure and composition of a highly rich community of cynipid gall wasps: the case of the oak hybrid complex Quercus magnoliifolia x Quercus resinosa in Mexico

  • Griselda Pérez-López
  • Antonio González-Rodríguez
  • Ken Oyama
  • Pablo Cuevas-Reyes
Original Paper

Abstract

The richness and composition of herbivore communities can be influenced by the genetic variation of host plants. Hybrid plant populations are ideal to test these effects because they usually harbor high genetic variation and display a mosaic of phenotypic characters. The goal of this study was to examine the effect of hybridization between two Mexican white oaks, Q. magnoliifolia and Q. resinosa, on the composition and diversity of the associated cynipid gall wasp community. We used eight nuclear microsatellite markers to genotype 150 oak individuals sampled at three different altitudes at the Tequila volcano and conducted monthly samplings of galls in each individual over the course of 2 years. A Bayesian assignment analysis indicated genetic admixture between the two oak species at the study site and allowed classifying individuals as Q. magnoliifolia, Q. resinosa or hybrids. Gall morphospecies richness was significantly higher in the hybrids, intermediate in Q. magnoliifolia and lower in Q. resinosa. Overall, 48 different gall morphospecies were found, with 21 of them being shared among the three groups of plants, 13 between two groups of plants, and 14 were unique to one group of plants, with eight of these being found in hybrids. Several of the shared galls showed differences in abundance among plant groups. Therefore, genetic structure in this oak complex significantly influences the diversity and composition of the associated gall wasp community, and hybrid individuals are probably acting as potential sinks and bridges for the colonization of plant hosts by these highly specialized insect species.

Keywords

Bayesian assignment Microsatellites Fagaceae Hybrid sink hypothesis Cynipids 

References

  1. Abbott RJ, Brennan AC (2014) Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc Lond B Biol Sci B 369:20130346. doi:10.1098/rstb.2013.0346 CrossRefGoogle Scholar
  2. Abrahamson WG, Hunter MD, Melika G, Price PW (2003) Cynipid gall-wasp communities correlate with oak chemistry. J Chem Ecol 29:209–223. doi:10.1023/A:1021993017237 CrossRefPubMedGoogle Scholar
  3. Aguilar JM, Boecklen WJ (1992) Patterns of herbivory in the Quercus grisea × Quercus gambelii species complex. Oikos 64:498–504. doi:10.2307/3545167 CrossRefGoogle Scholar
  4. Albarrán-Lara AL, Mendoza-Cuenca L, Valencia-Avalos S, González-Rodríguez A, Oyama K (2010) Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int J Plant Sci 171:310–322. doi:10.1086/650317 CrossRefGoogle Scholar
  5. Aldrich PR, Jagtap M, Michler CH, Romero-Severson J (2003) Amplification of north american red oak microsatellite markers in european white oaks and chinese chestnut. Silvae Genet 52:176–179Google Scholar
  6. Aparicio JM, Ortego J, Cordero PJ (2006) What should we weigh to estimate heterozygosity, alleles or loci? Mol Ecol 15:4659–4665. doi:10.1111/j.1365-294X.2006.03111.x CrossRefPubMedGoogle Scholar
  7. Araújo SW, Scareli-Santos C, Guimaraes FAG, Cuevas-Reyes P (2013) Comparing galling insect richness among neotropical savannas: effects of plant richness, vegetation structure and super-host presence. Biodivers Conserv 22:1083–1094. doi:10.1007/s10531-013-0474-8 CrossRefGoogle Scholar
  8. Arizaga S, Martínez-Cruz J, Salcedo-Cabrales M, Bello-González MA (2009) Aspectos generales de los encinos. In: Arizaga S, Cruz JM, Cabrales MS, González MAB (eds) Manual de la biodiversidad de encinos michoacanos. Secretaría de Medio Ambiente y Recursos Naturales (Semarnat), Instituto Nacional de Ecología (INESemarnat), México, pp 12–141Google Scholar
  9. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  10. Bangert RK, Whitham TG (2007) Genetic assembly rules and community phenotypes. Evol Ecol 21:549–560. doi:10.1007/s10682-006-9135-7 CrossRefGoogle Scholar
  11. Boecklen WJ, Spellenberg R (1990) Structure of herbivore communities in two oak. Oecologia 85:92–100. doi:10.1007/BF00317348 CrossRefGoogle Scholar
  12. Booth RE, Grime JP (2003) Effects of genetic impoverishment on plant community diversity. J Ecol 91:721–730. doi:10.1046/j.1365-2745.2003.00804.x CrossRefGoogle Scholar
  13. Brunet J, Zalapa JE, Pecori F, Santini A (2013) Hybridization and introgression between the exotic Siberian elm, Ulmus pumila, and the native field elm, U. minor, in Italy. Biol Invasion 15:2717–2730. doi:10.1007/s10530-013-0486-z CrossRefGoogle Scholar
  14. Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367. doi:10.1111/j.1365-2435.2010.01794.x CrossRefGoogle Scholar
  15. Cheng D, Vrieling K, Klinkhammer PGL (2011) The effect of hybridization on secondary metabolites and herbivore resistance: implications for the evolution of chemical diversity in plants. Phytochem Rev 10:107–117. doi:10.1007/s11101-010-9194-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21. doi:10.1093/jpe/rtr044 CrossRefGoogle Scholar
  17. Cooper WR, Rieske LK (2010) Gall structure affects ecological associations of Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae). Environ Entomol 39:787–797. doi:10.1603/EN09382 CrossRefPubMedGoogle Scholar
  18. Crespi BJ, Carmean DA, Chapman TW (1997) Ecology and evolution of galling thrips and their allies. Ann Rev Entomol 42:51–71. doi:10.1146/annurev.ento.42.1.51 CrossRefGoogle Scholar
  19. Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004a) Diversity of gall-forming insects in a Mexican tropical dry forest: the importance of plant species richness, life forms, host plant age and plant density. J Ecol 92:707–716. doi:10.1111/j.0022-0477.2004.00896.x CrossRefGoogle Scholar
  20. Cuevas-Reyes P, Quesada M, Siebe C, Oyama K (2004b) Spatial patterns of herbivory by gall-forming insects: a test to the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181–189. doi:10.1111/j.0030-1299.2004.13263.x CrossRefGoogle Scholar
  21. Donaldson JR, Lindroth RL (2007) Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspen. Ecology 88:729–739. doi:10.1890/06-0064 CrossRefPubMedGoogle Scholar
  22. Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 8–33Google Scholar
  23. Dungey H, Potts BM, Whitham TG, Li H (2000) Plant genetics affects arthropod community richness and composition: evidence from a synthetic eucalypt hybrid population. Evolution 54:1938–1946. doi:10.1554/0014-3820(2000)054[1938:PGAACR]2.0.CO;2 CrossRefPubMedGoogle Scholar
  24. Earl DA, von Holdt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  26. Evans LM, Allan GJ, Whitham TG (2012) Populus hybrid hosts drive divergence in the herbivorous mite, Aceria parapopuli: implications for conservation of plant hybrid zones as essential habitat. Conserv Genet 13:1601–1609. doi:10.1007/s10592-012-0409-z CrossRefGoogle Scholar
  27. Floate KD, Whitham TG (1993) The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. Am Nat 141:651–662. doi:10.1086/285497 CrossRefPubMedGoogle Scholar
  28. Floate KD, Whitham TG (1995) Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can J Bot 73:1–13. doi:10.1139/b95-001 CrossRefGoogle Scholar
  29. Floate K, Kearsley MJC, Whitham TG (1993) Elevated herbivory in plant hybrid zones: Chrysomela confluens, Populus and phenological sinks. Ecology 74:2056–2065CrossRefGoogle Scholar
  30. Fritz RS, Nichols-Orians CM, Brunsfeld SJ (1994) Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106–117. doi:10.1007/BF00317914 CrossRefGoogle Scholar
  31. Fritz RS, Roche BM, Brunsfeld SJ, Orians CM (1996) Interspecific and temporal variation in herbivore responses. Oikos 108:121–129. doi:10.1007/BF00333223 Google Scholar
  32. González Villarreal LM (1986) Contribuciones al conocimiento del género Quercus en el estado de Jalisco. Colección Flora de Jalisco. Instituto de Botánica, Universidad de Guadalajara, ZapopanGoogle Scholar
  33. González-Rodríguez A, Arias DM, Valencia S, Oyama K (2004) Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. Am J Bot 91:401–409. doi:10.3732/ajb.91.3.401 CrossRefPubMedGoogle Scholar
  34. Gotelli NJ, Entsminger GL (2001). Ecosim: null models software for ecology, version 6.0. Acquired Intelligence Inc, & Kesey-Bear. http://homepages.together.net/gentsmin/ecosim.htm
  35. Hedge SG, Nason JD, Clegg JM, Ellstrand NC (2006) The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–1197. doi:10.1554/05-634.1 CrossRefGoogle Scholar
  36. Hernández-Calderon E, González-Rodríguez A, Méndez-Alonzo R, Vega-Peña E, Oyama K (2013) Contrasting leaf phenology in two white oaks, Quercus magnoliifolia and Quercus resinosa, along an altitudinal gradient in Mexico. Can J For Res 43:208–2013. doi:10.1139/cjfr-2012-0406 CrossRefGoogle Scholar
  37. Hochwender CG, Fritz RS (2004) Plant genetic differences influence herbivore community structure: evidence from a hybrid willow system. Oecologia 138:547–557. doi:10.1007/s00442-003-1472-4 CrossRefPubMedGoogle Scholar
  38. Hunter MD, Varley GC, Gradwell GR (1997) Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: a classic study revisited. Proc Natl Acad Sci 94:9176–9181. doi:10.1007/s00442-010-1802-2 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Johnson MTJ, Agrawal AA (2005) Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 86:874–885. doi:10.1890/04-1068 CrossRefGoogle Scholar
  40. Johnson MTJ, Lajeunesse MJ, Agrawal AA (2006) Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecol Lett 9:24–34. doi:10.1111/j.1461-0248.2005.00833.x PubMedGoogle Scholar
  41. Jones JH (1986) Evolution of the Fagaceae: implications of defoliation. Bot Gard 73:228–275CrossRefGoogle Scholar
  42. Kampfer S, Lexer C, GloÈssl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186. doi:10.1111/j.1601-5223.1998.00183.x CrossRefGoogle Scholar
  43. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstain JL (2010) Mutualism in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474. doi:10.1111/j.1461-0248.2010.01538.x CrossRefGoogle Scholar
  44. Larson KC, Whitham TG (1997) Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia 109:575–582. doi:10.1007/s004420050119 CrossRefGoogle Scholar
  45. Leimu R, Kloss L, Fischer M (2008) Effects of experimental inbreeding on herbivore resistance and plant fitness: the role of history of inbreeding, herbivory and abiotic factors. Ecol Lett 11:1001–1110. doi:10.1111/j.1461-0248.2008.01222.x CrossRefGoogle Scholar
  46. Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231. doi:10.1098/rsbl.2007.0633 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Maldonado-López Y, Cuevas-Reyes P, Stone GN, Nieves-Aldrey JL, Oyama K (2015a) Gall wasp community response to fragmentation of oak tree species: importance of fragment size and isolated trees. Ecosphere 6:1–15. doi:10.1890/ES14-00355.1 CrossRefGoogle Scholar
  48. Maldonado-López S, Cuevas-Reyes P, González-Rodríguez A, Pérez-López G, Acosta-Gómez C, Oyama K (2015b) Relationships among plant genetics, phytochemistry and herbivory patterns in Quercus castanea across a fragmented landscape. Ecol Res 30:133–143. doi:10.1007/s11284-014-1218-2 CrossRefGoogle Scholar
  49. Moran NA, Whitham TG (1988) Evolutionary reduction of complex life cycles: loss of host alternation in Pemphigus (Homoptera: Aphididae). Evolution 42:717–728. doi:10.2307/2408863 CrossRefGoogle Scholar
  50. Morin PJ (2003) Community ecology and the genetics of interacting species. Ecology 84:577–580. doi:10.1890/0012-9658(2003)084[0577:CEATGO]2.0.CO;2 CrossRefGoogle Scholar
  51. Nakamura M, Asanuma M, Hiura T (2010) Differential effects of host plant hybridization on herbivore community structure and grazing pressure on forest canopies. Oikos 119:1445–1452. doi:10.1111/j.1600-0706.2010.18255.x CrossRefGoogle Scholar
  52. Nieves-Aldrey JL (2001) Hymenoptera, Cynipidae. In: Ramos MA, Nieves-Aldrey JL (eds) Fauna Ibérica, vol 16. Museo Nacional de Ciencias Naturales. CSIC, MadridGoogle Scholar
  53. Nixon KC (1993) The genus Quercus in Mexico. In: Nixon KC (ed) Biological diversity of Mexico: origins and distributions. Oxford University Press, New York, pp 447–458Google Scholar
  54. Nyman T, Widmer A, Roininen H (2000) Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54:526–533. doi:10.1111/j.0014-3820.2000.tb00055.x CrossRefPubMedGoogle Scholar
  55. Oyama K, Pérez-Pérez M, Cuevas-Reyes P, Luna R (2003) Regional and local species richness of gall-forming insects in two tropical rain forest in Mexico. J Trop Ecol 19:595–598CrossRefGoogle Scholar
  56. Pearse IS, Baty JH (2012) The predictability of traits and ecological interactions on 17 different crosses of hybrid oaks. Oecologia 169:489–497. doi:10.1007/s00442-011-2216-5 CrossRefPubMedGoogle Scholar
  57. Peñaloza-Ramírez JM, González-Rodríguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interspecific gene flow in a multispecies oak hybrid zone in the sierra Tarahumara of Mexico. Ann Bot 105:389–399. doi:10.1093/aob/mcp301 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  59. Rehill B, Clauss A, Wieczorek L, Whitham T, Lindroth R (2005) Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. Biochem Syst Ecol 33:125–131. doi:10.1016/j.bse.2004.06.004 CrossRefGoogle Scholar
  60. Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridization. Crit Rev Plant Sci 12:213–241. doi:10.1080/07352689309701902 Google Scholar
  61. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216. doi:10.1126/science.1086949 CrossRefPubMedGoogle Scholar
  62. Robertson A, Newton AC, Liljeblad J (2004) Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Mol Ecol 13:123–134. doi:10.1046/j.1365-294X.2003.02025.x CrossRefPubMedGoogle Scholar
  63. Ronquist FJ, Liljeblad J (2001) Evolution of the gall waps-host plant association. Evolution 55:2503–2522. doi:10.1126/science.1086949 PubMedGoogle Scholar
  64. Rzedowski J (1978) Vegetación de México. Limusa, MéxicoGoogle Scholar
  65. SAS (2000) Categorical data analysis using the SAS system. SAS Institute, CaryGoogle Scholar
  66. Sokal RR, Rohlf FJ (1995) Biometry: the principles of statistics in biological research, 3rd edn. W.H. Freeman, New YorkGoogle Scholar
  67. Steinkellner H, Lexer C, Turetschek E, Glössl J (1997) Conservation of (GA)n loci between Quercus species. Mol Ecol 6:1189–1194. doi:10.1046/j.1365-294X.1997.00288.x CrossRefGoogle Scholar
  68. Stevens L, Guiyun Y, Pray LA (1997) Consequences of inbreeding on invertebrate host susceptibility to parasitic infection. Evolution 51:2032–2039. doi:10.2307/2411025 CrossRefGoogle Scholar
  69. Stokes ME, Davis CS, Koch GG (2000) Categorical data analysis using the SAS system, 2nd edn. SAS, CaryGoogle Scholar
  70. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Tree 18:512–522. doi:10.1016/S0169-5347(03)00247-7 Google Scholar
  71. Stone GN, Schönrogge K, Atkinson R, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Ann Rev Entomol 47:633–668. doi:10.1146/annurev.ento.47.091201.145247 CrossRefGoogle Scholar
  72. Stone GN, Hernández-López A, Nicholls JA, di Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63:854–869. doi:10.1111/j.1558-5646.2008.00604.x CrossRefPubMedGoogle Scholar
  73. Tovar-Sanchez E, Oyama K (2006a) Effect of hybridization of the Quercus crassifolia × Quercus crassipes complex on the community structure of endophagous insects. Oecologia 147:702–713. doi:10.1007/s00442-005-0328-5 CrossRefPubMedGoogle Scholar
  74. Tovar-Sanchez E, Oyama K (2006b) Community structure of canopy arthropods associated to Quercus crassifolia × Quercus crassipes complex. Oikos 112:370–381CrossRefGoogle Scholar
  75. Tovar-Sánchez E, Oyama K (2004) Natural hybridization and hybrid zones between Quercus crassifolia and Q. crassipes in Mexico. Morphological and molecular evidence. Am J Bot 91:1352–1363. doi:10.3732/ajb.91.9.1352 CrossRefPubMedGoogle Scholar
  76. Tovar-Sánchez E, Valencia-Cuevas L, Castillo-Mendoza E, Mussali-Galante P, Pérez-Ruíz RV, Mendoza A (2013) Association between individual genetic diversity of two oak host species and canopy arthropod community structure. Eur J For Res 132:165–179. doi:10.1007/s10342-012-0665-y CrossRefGoogle Scholar
  77. Tscharntke T, Stefan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland cropland landscapes. Ecol Appl 12:354–363. doi:10.2307/3060947 Google Scholar
  78. Valencia S (2004) Diversidad del género Quercus (Fagaceae) en México. Sociedad Botánica de México, MéxicoGoogle Scholar
  79. Valencia-Cuevas L, Tovar-Sánchez E (2015) Oak canopy arthropod communities: which factors shape its structure? Rev Chil Hist Nat 88:1–22. doi:10.1186/s40693-015-0045-3 CrossRefGoogle Scholar
  80. Valencia-Cuevas L, Piñero D, Mussali-Galante P, Valencia-Ávalos S, Tovar-Sánchez E (2014) Effect of a red oak species gradient on genetic structure and diversity of Quercus castanea (Fagaceae) in Mexico. Tree Genet Genomes 10:641–652. doi:10.1007/s11295-014-0710-8 CrossRefGoogle Scholar
  81. Wade MJ (2003) Community genetics and species interactions. Ecology 84:583–585. doi:10.1890/0012-9658(2003)084[0583:CGASI]2.0.CO;2 CrossRefGoogle Scholar
  82. Whitham TG (1989) Plant hybrid zones as sinks for pests. Science 244:1490–1493. doi:10.1126/science.244.4911.1490 CrossRefGoogle Scholar
  83. Whitham TG, Morrow PA, Potts BM (1994) Plant hybrid zones as centers of biodiversity: the herbivore community of two endemic Tasmanian eucalypts. Oecologia 97:481–490. doi:10.1007/BF00325886 CrossRefGoogle Scholar
  84. Whitham TG, Martinsen GD, Keim P, Floate KD, Dungey HS, Potts BM (1999) Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology 80:416–428. doi:10.2307/176622 CrossRefGoogle Scholar
  85. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Gery Allan J, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics:from genes to ecosystems. Nat Rev Genet 7:510–523. doi:10.1038/nrg1877 CrossRefPubMedGoogle Scholar
  86. Wimp GM, Young WP, Woolbright SA, Martinsen PK, Whitham TG (2004) Conserving plant genetic diversity for dependent animal communities. Ecol Lett 7:776–780. doi:10.1111/j.1461-0248.2004.00635.x CrossRefGoogle Scholar
  87. Wimp GM, Martinsen GD, Floate KD, Bangert RK, Whitham TG (2005) Plant genetic determinants of arthropod community structure and diversity. Evolution 59:61–69. doi:10.1111/j.0014-3820.2005.tb00894.x CrossRefPubMedGoogle Scholar
  88. Zalapa JE, Brunet J, Guries RP (2009) Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. Am J Bot 96:1116–1128. doi:10.3732/ajb.0800334 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Griselda Pérez-López
    • 1
  • Antonio González-Rodríguez
    • 2
  • Ken Oyama
    • 3
  • Pablo Cuevas-Reyes
    • 1
  1. 1.Laboratorio de Ecología de Interacciones Bióticas, Facultad de BiologíaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Escuela Nacional de Estudios Superiores Unidad Morelia, UNAMMoreliaMexico

Personalised recommendations