Skip to main content

Advertisement

Log in

Hydropower and the future of Amazonian biodiversity

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In an effort to ensure energy independence and exploit mineral resources, the governments of Amazonian countries are embarking on a major dam building drive on the basin’s rivers, with 191 dams finished and a further 246 planned or under construction. This rush to harvest the basin’s vast renewable energy capacity has come without proper consideration of the likely negative environmental externalities on the world’s most speciose freshwater and terrestrial biotas. Here we highlight the economic drivers for hydropower development and review the literature to summarise the impacts of dam building on Amazonian biodiversity. We identify both direct and indirect impacts through the anticipated loss, fragmentation and degradation of riparian habitats. We then propose a series of measures to assess, curb and mitigate the impacts of destructive dams on Amazonian biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Agostinho CS, Pelicice FM, Marques EE, Soares AB, de Almeida DAA (2011) All that goes up must come down? Absence of downstream passage through a fish ladder in a large Amazonian river. Hydrobiologia 675:1–12

    Article  Google Scholar 

  • Akella AK, Saini RP, Sharma MP (2009) Social, economical and environmental impacts of renewable energy systems. Renew Energ 34:390–396

    Article  Google Scholar 

  • Alho CJ (2011) Environmental effects of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review. Oecol Aust 15:593–604

    Article  Google Scholar 

  • Alho CJ, Reis RE, Aquino PP (2015) Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio 44:412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ANEEL (Agência Nacional de Energia Elétrica) (2016) Sistema de Informações Georreferenciadas do Setor Elétrico—SIGEL.ANEEL, Brasília, DF, Brazil. http://www.aneel.gov.br/. Downloaded 02/04/2016

  • Ansar A, Flyvbjerg B, Budzier A, Lunn D (2014) Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69:43–56. doi:10.1016/j.enpol.2013.10.069

    Article  Google Scholar 

  • Araújo CC, Wang JY (2015) The dammed river dolphins of Brazil: impacts and conservation. Oryx 49:17–24

    Article  Google Scholar 

  • Baitelo R, Yamaoka M, Nitta R, Batista R (2013) [R]evolução energética: A caminho do desenvolvimento. Greenpeace Brasil, São Paulo, SP, Brazil. http://www.greenpeace.org/brasil/pt/Documentos/Revolucao-Energetica-/

  • Barreto P, Brandão Jr A, Martins H, Silva D, Souza Jr C, Sales M, Feitosa T (2011) Risco de Desmatamento Associado à Hidrelétrica de Belo Monte. Instituto do Homem e do Meio Ambiente na Amazônia (Imazon), Belém, Pará, Brazil. http://www.imazon.org.br/publicacoes/livros/risco-de-desmatamento-associado-a-hidreletrica-de-belo-monte-1

  • Benchimol M, Peres CA (2015a) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. J Ecol 103:408–420

    Article  Google Scholar 

  • Benchimol M, Peres CA (2015b) Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biol Conserv 187:61–72

    Article  Google Scholar 

  • Bird JP, Buchanan GM, Lees AC, Clay RP, Develey PF, Yépez I, Butchart SH (2012) Integrating spatially explicit habitat projections into extinction risk assessments: a reassessment of Amazonian avifauna incorporating projected deforestation. Divers Distrib 18:273–281

    Article  Google Scholar 

  • Castello L, McGrath DG, Hess LL, Coe MT, Lefebvre PA, Petry P, Macedo MN, Renó VF, Arantes CC (2013) The vulnerability of Amazon freshwater ecosystems. Conserv Lett 6:217–229

    Article  Google Scholar 

  • de Lima Andrade A, dos Santos MA (2015) Hydroelectric plants environmental viability: strategic environmental assessment application in Brazil. Renew Sustain Energy Rev 52:1413–1423

    Article  Google Scholar 

  • De Luca AC (2006) Final Report: waterbirds in Brazil. SAVE Brasil, São Paulo, SP, Brazil

  • De Luca AC, Develey PF, Bencke GA, Goerck JM (2009) Áreas Importantes para a Conservação das Aves no Brasil. Parte II—Amazônia, Cerrado e Pantanal. SAVE Brasil, São Paulo, SP, Brazil

  • Drewitt AL, Langston RH (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42

    Article  Google Scholar 

  • Fearnside PM (1989) Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ Manag 13:401–423

    Article  Google Scholar 

  • Fearnside PM (1995) Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases. Environ Conserv 22:7–19

    Article  CAS  Google Scholar 

  • Fearnside PM (2008) The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecol Soc 13:23. http://www.ecologyandsociety.org/vol13/iss1/art23/

  • Fearnside PM (2013) Decision making on Amazon dams: politics trumps uncertainty in the Madeira river sediments controversy. Water Alternat 6:313–325

    Google Scholar 

  • Fearnside PM (2014a) Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ Sci Policy 38:164–172

    Article  Google Scholar 

  • Fearnside PM (2014b) Brazil’s Madeira River dams: a setback for environmental policy in Amazonian development. Water Alternat 7:156–169

    Google Scholar 

  • Fearnside PM (2015) Amazon dams and waterways: Brazil’s Tapajós Basin plans. Ambio 44:426–439

    Article  PubMed  Google Scholar 

  • Fearnside PM (2016a) Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminium industry. World Dev 77:48–65

    Article  Google Scholar 

  • Fearnside PM (2016b) Tropical dams: to build or not to build? Science 351:456–457

    Article  CAS  PubMed  Google Scholar 

  • Fearnside PM, Pueyo S (2012) Greenhouse-gas emissions from tropical dams. Nat Clim Change 2:382–384

    Article  CAS  Google Scholar 

  • Ferreira LV, Cunha DA, Chaves PP, Matos DC, Parolin P (2013) Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian. An Acad Bras Ciênc 85:1013–1023

    Article  PubMed  Google Scholar 

  • Ferreira J, Aragão LEOC, Barlow J, Barreto P, Berenguer E, Bustamante M, Gardner TA, Lees AC, Lima A, Louzada J, Pardini R, Parry L, Peres CA, Pompeu PS, Tabarelli M, Zuanon J (2014) Brazil’s environmental leadership at risk. Science 346:706–707

    Article  CAS  PubMed  Google Scholar 

  • Finer M, Jenkins CN (2012) Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7:e35126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulding M (1980) The fishes and the forest: Explorations in Amazonian natural history. University of California Press, Berkeley

    Google Scholar 

  • Grill G, Lehner B, Lumsdon AE, MacDonald GK, Zarfl C, Liermann CR (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ Res Lett 10:015001

    Article  Google Scholar 

  • Haffer J (1994) Very small bird populations in Amazonia. In: Remmert H (ed) Minimum Animal Populations. Springer, Berlin, pp 105–117

    Chapter  Google Scholar 

  • Hrbek T, da Silva VMF, Dutra N, Gravena W, Martin AR et al (2014) A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9:e83623

    Article  PubMed  PubMed Central  Google Scholar 

  • ICMBio (Instituto Chico Mendes de Biodiversidade) (2012) Sumário Executivo do Plano de Ação Nacional para a Conservação das Espécies Endêmicas e Ameaçadas de Extinção da Fauna da Região do Baixo e Médio Xingu. ICMBIO, Brasília, DF, Brazil. http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/pan-xingu/sum%C3%A1rio_xingufauna.pdf

  • IJHD (International Journal on Hydropower and Dams) (2010) World Atlas & Industry Guide. Int J Hydropower Dams. IJHD, Wallington, Surrey, UK

  • Isaac VJ (2008) Diagnóstico ambiental da AHE- Belo Monte—Médio e Baixo Rio Xingu—Ictiofauna e pesca. Aproveitamento hidrelétrico Belo Monte Diagnóstico—estudo de impacto Ambiental sobre a fauna e flora da região do medio rio Xingu—UHE Belo Monte. Museu Goeldi, Belém, Pará, Brazil. http://licenciamento.ibama.gov.br/Hidreletricas/Belo%20Monte/EIA/Volume%2019%20-%20RELATORIOS%20MPEG%20ICTIOFAUNA/TEXTO/RELAT%D3RIO%20FINAL%20ICTIOFAUNA%20E%20PESCA%20V7.pdf

  • Isbrucker IJH, Nijssen H (1991) Hypancistrus zebra, a new genus and species of uniquely pigmented ancistrine loricariid fish from the Rio Xingu, Brazil (Pisces: Siluriformes: Loricariidae). Ichthyol Explor Freshw 1:345–350

    Google Scholar 

  • Junk WJ, Soares MGM, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat Ecosyst Health 10:153–173

    Article  Google Scholar 

  • Kahn JR, Freitas CE, Petrere M (2014) False shades of green: the case of Brazilian Amazonian hydropower. Energies 7:6063–6082

    Article  Google Scholar 

  • Killeen TJ (2007) A perfect storm in the Amazon Wilderness: development and conservation in the Context of the Initiative for the Integration of the Regional Infrastructure of South America (IIRSA). Conservation International, Arlington, VA, USA. http://www.conservation.org/publications/Documents/AABS.7_Perfect_storm_English.low.res.pdf

  • Kumar A, Schei T, Ahenkorah A, Caceres Rodriguez R, Devernay J-M, Freitas M, Hall D, Killingtveit Å, Liu Z (2011) Hydropower. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC Special Report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 437–496

    Chapter  Google Scholar 

  • Lees AC (2015) Fisheries: leave Brazil’s Red List alone. Nature 518:167

    Article  CAS  PubMed  Google Scholar 

  • Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548

    Article  Google Scholar 

  • Marques AAB, Peres CA (2015) Pervasive legal threats to protected areas in Brazil. Oryx 49:25–29

    Article  Google Scholar 

  • McAllister DE, Craig JF, Davidson N, Delany S, Seddon M (2001) Biodiversity Impacts of Large Dams. Background Paper 1. Prepared for IUCN/UNEP/WCD. http://intranet.iucn.org/webfiles/doc/archive/2001/IUCN850.pdf

  • McClain ME, Naiman RJ (2008) Andean influences on the biogeochemistry and ecology of the Amazon River. Bioscience 58:325–338

    Article  Google Scholar 

  • Meybeck M, Ragu A (1996) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients. Environment Information and Assessment Report, UNEP, Paris

  • Miranda-Chumacero G, Álvarez G, Luna V, Wallace RB, Painter L (2015) First observations on annual massive upstream migration of juvenile catfish Trichomycterus in an Amazonian River. Environ Biol Fishes 98:1913–1926

    Article  Google Scholar 

  • MMA (Ministério do Meio Ambiente) Brasil (2014) Portarias no 443, 444, 445, de 17 de dezembro de 2014. Diário Oficial da União, Seção 1 (245):110–130, 18 Dezembro 2014

  • MME (Ministério de Minas e Energia) (2011) Plano Nacional de Mineração 2030 (PNM—2030). MME, Brasília, DF, Brazil

    Google Scholar 

  • MME/EPE (Ministério de Minas e Energia/Empresa de Pesquisa Energética) (2013) Plano Decenal de Expansão de Energia 2022. MME/EPE, Brasília, DF, Brazil. http://www.epe.gov.br/Estudos/Documents/PDE2022.pdf

  • Moreira PF (ed.) (2012) Setor Elétrico Brasileiro e a Sustentabilidade no Século 21: Oportunidades e Desafios. 2a ed. Rios Internacionais, Brasília, DF, Brazil. http://www.internationalrivers.org/node/7525

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc Lond B Biol Sci 363:1737–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    Article  CAS  PubMed  Google Scholar 

  • Nogueira C, Buckup PA, Menezes NA, Oyakawa OT, Kasecker TP, Neto MBR, da Silva JMC (2010) Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS ONE 5:e11390

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira LJC, Costa MH, Soares-Filho BS, Coe MT (2013) Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ Res Lett 8:024021

    Article  Google Scholar 

  • Palmeirim AF, Peres CA, Rosas FC (2014) Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol Conserv 174:30–38

    Article  Google Scholar 

  • Pereira R (2013) Orçado em R$ 16 bilhões, custo da Usina de Belo Monte já supera os R$ 30 Bilhões. O Estado de S. Paulo, 11 May 2013. http://economia.estadao.com.br/noticias/geral,orcado-em-r-16-bilhoes-custo-da-usina-de-belo-monte-ja-supera-os-r-30-bilhoes,153398e

  • Philbrick CT, Bove CP, Stevens HI (2010) Endemism in Neotropical Podostemaceae 1. Ann Missouri Bot Gard 97:425–456

    Article  Google Scholar 

  • Poirier C (2012) Belo Sun Mining sets sights on golden opportunity in the Xingu. http://amazonwatch.org/news/2012/1005-belo-sun-mining-sets-sights-on-golden-opportunity-in-the-xingu

  • Prado AP, Athayde S, Mossa J, BohlmanS Leite F, Oliver-Smith A (2016) How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renew Sustain Energy Rev 53:1132–1136

    Article  Google Scholar 

  • Premalatha M, Abbasi T, Abbasi SA (2014) A critical view on the eco-friendliness of small hydroelectric installations. Sci Total Environ 481:638–643

    Article  CAS  PubMed  Google Scholar 

  • RAISG (Rede Amazônica de Informação Socioambiental Georeferenciada) (2013) Amazonía Bajo Presión. Socio-Environmental Institute, São Paulo, SP, Brazil. http://www.raisg.socioambiental.org/amazonia-bajo-presion-2012

  • Reis RE (2013) Conserving the freshwater fishes of South America. Int Zoo Yearb 47:65–70

    Article  Google Scholar 

  • Ribeiro MCLDB, Petrere M, Juras AA (1995) Ecological integrity and fisheries ecology of the Araguaia—Tocantins River Basin, Brazil. Regul Rivers Res Manag 11:325–350

    Article  Google Scholar 

  • Sá-Oliveira JC, Isaac VJ, Ferrari SF (2015a) Fish community structure as an indicator of the long-term effects of the damming of an Amazonian river. Regul Rivers Res Manag 98:273–286

    Google Scholar 

  • Sá-Oliveira JC, Hawes JE, Isaac-Nahum VJ, Peres CA (2015b) Upstream and downstream responses of fish assemblages to an Eastern Amazonian hydroelectric dam. Freshw Biol 60:2037–2050

    Article  Google Scholar 

  • Stickler CM, Coe MT, Costa MH, Nepstad DC, McGrath DG, Dias LC, Rodrigues HO, Soares-Filho BS (2013) Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc Nat Acad Sci USA 110:9601–9606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland WJ, Alves JA, Amano T, Chang CH, Davidson NC, Max Finlayson C, Gill JA, Thompson D (2012) A horizon scanning assessment of current and potential future threats to migratory shorebirds. Ibis 154:663–679

    Article  Google Scholar 

  • Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny ML (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129

    Article  CAS  PubMed  Google Scholar 

  • Winzer C (2012) Conceptualizing energy security. Energy Policy 46:36–48

    Article  Google Scholar 

Download references

Acknowledgments

We thank Priscilla Amaral for additional information and Leandro Sousa for the use of his fish images. ACL, JZ and PMF thank CNPq for funding. CAP was funded by a CAPES Grant (PVE 004/2012) during this writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander C. Lees.

Additional information

Communicated by Karen E. Hodges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lees, A.C., Peres, C.A., Fearnside, P.M. et al. Hydropower and the future of Amazonian biodiversity. Biodivers Conserv 25, 451–466 (2016). https://doi.org/10.1007/s10531-016-1072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1072-3

Keywords

Navigation