Skip to main content

Hydropower and the future of Amazonian biodiversity

Abstract

In an effort to ensure energy independence and exploit mineral resources, the governments of Amazonian countries are embarking on a major dam building drive on the basin’s rivers, with 191 dams finished and a further 246 planned or under construction. This rush to harvest the basin’s vast renewable energy capacity has come without proper consideration of the likely negative environmental externalities on the world’s most speciose freshwater and terrestrial biotas. Here we highlight the economic drivers for hydropower development and review the literature to summarise the impacts of dam building on Amazonian biodiversity. We identify both direct and indirect impacts through the anticipated loss, fragmentation and degradation of riparian habitats. We then propose a series of measures to assess, curb and mitigate the impacts of destructive dams on Amazonian biodiversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132

    CAS  Article  PubMed  Google Scholar 

  2. Agostinho CS, Pelicice FM, Marques EE, Soares AB, de Almeida DAA (2011) All that goes up must come down? Absence of downstream passage through a fish ladder in a large Amazonian river. Hydrobiologia 675:1–12

    Article  Google Scholar 

  3. Akella AK, Saini RP, Sharma MP (2009) Social, economical and environmental impacts of renewable energy systems. Renew Energ 34:390–396

    Article  Google Scholar 

  4. Alho CJ (2011) Environmental effects of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review. Oecol Aust 15:593–604

    Article  Google Scholar 

  5. Alho CJ, Reis RE, Aquino PP (2015) Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio 44:412–415

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. ANEEL (Agência Nacional de Energia Elétrica) (2016) Sistema de Informações Georreferenciadas do Setor Elétrico—SIGEL.ANEEL, Brasília, DF, Brazil. http://www.aneel.gov.br/. Downloaded 02/04/2016

  7. Ansar A, Flyvbjerg B, Budzier A, Lunn D (2014) Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69:43–56. doi:10.1016/j.enpol.2013.10.069

    Article  Google Scholar 

  8. Araújo CC, Wang JY (2015) The dammed river dolphins of Brazil: impacts and conservation. Oryx 49:17–24

    Article  Google Scholar 

  9. Baitelo R, Yamaoka M, Nitta R, Batista R (2013) [R]evolução energética: A caminho do desenvolvimento. Greenpeace Brasil, São Paulo, SP, Brazil. http://www.greenpeace.org/brasil/pt/Documentos/Revolucao-Energetica-/

  10. Barreto P, Brandão Jr A, Martins H, Silva D, Souza Jr C, Sales M, Feitosa T (2011) Risco de Desmatamento Associado à Hidrelétrica de Belo Monte. Instituto do Homem e do Meio Ambiente na Amazônia (Imazon), Belém, Pará, Brazil. http://www.imazon.org.br/publicacoes/livros/risco-de-desmatamento-associado-a-hidreletrica-de-belo-monte-1

  11. Benchimol M, Peres CA (2015a) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. J Ecol 103:408–420

    Article  Google Scholar 

  12. Benchimol M, Peres CA (2015b) Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biol Conserv 187:61–72

    Article  Google Scholar 

  13. Bird JP, Buchanan GM, Lees AC, Clay RP, Develey PF, Yépez I, Butchart SH (2012) Integrating spatially explicit habitat projections into extinction risk assessments: a reassessment of Amazonian avifauna incorporating projected deforestation. Divers Distrib 18:273–281

    Article  Google Scholar 

  14. Castello L, McGrath DG, Hess LL, Coe MT, Lefebvre PA, Petry P, Macedo MN, Renó VF, Arantes CC (2013) The vulnerability of Amazon freshwater ecosystems. Conserv Lett 6:217–229

    Article  Google Scholar 

  15. de Lima Andrade A, dos Santos MA (2015) Hydroelectric plants environmental viability: strategic environmental assessment application in Brazil. Renew Sustain Energy Rev 52:1413–1423

    Article  Google Scholar 

  16. De Luca AC (2006) Final Report: waterbirds in Brazil. SAVE Brasil, São Paulo, SP, Brazil

  17. De Luca AC, Develey PF, Bencke GA, Goerck JM (2009) Áreas Importantes para a Conservação das Aves no Brasil. Parte II—Amazônia, Cerrado e Pantanal. SAVE Brasil, São Paulo, SP, Brazil

  18. Drewitt AL, Langston RH (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42

    Article  Google Scholar 

  19. Fearnside PM (1989) Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ Manag 13:401–423

    Article  Google Scholar 

  20. Fearnside PM (1995) Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases. Environ Conserv 22:7–19

    CAS  Article  Google Scholar 

  21. Fearnside PM (2008) The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecol Soc 13:23. http://www.ecologyandsociety.org/vol13/iss1/art23/

  22. Fearnside PM (2013) Decision making on Amazon dams: politics trumps uncertainty in the Madeira river sediments controversy. Water Alternat 6:313–325

    Google Scholar 

  23. Fearnside PM (2014a) Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ Sci Policy 38:164–172

    Article  Google Scholar 

  24. Fearnside PM (2014b) Brazil’s Madeira River dams: a setback for environmental policy in Amazonian development. Water Alternat 7:156–169

    Google Scholar 

  25. Fearnside PM (2015) Amazon dams and waterways: Brazil’s Tapajós Basin plans. Ambio 44:426–439

    Article  PubMed  Google Scholar 

  26. Fearnside PM (2016a) Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminium industry. World Dev 77:48–65

    Article  Google Scholar 

  27. Fearnside PM (2016b) Tropical dams: to build or not to build? Science 351:456–457

    CAS  Article  PubMed  Google Scholar 

  28. Fearnside PM, Pueyo S (2012) Greenhouse-gas emissions from tropical dams. Nat Clim Change 2:382–384

    CAS  Article  Google Scholar 

  29. Ferreira LV, Cunha DA, Chaves PP, Matos DC, Parolin P (2013) Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian. An Acad Bras Ciênc 85:1013–1023

    Article  PubMed  Google Scholar 

  30. Ferreira J, Aragão LEOC, Barlow J, Barreto P, Berenguer E, Bustamante M, Gardner TA, Lees AC, Lima A, Louzada J, Pardini R, Parry L, Peres CA, Pompeu PS, Tabarelli M, Zuanon J (2014) Brazil’s environmental leadership at risk. Science 346:706–707

    CAS  Article  PubMed  Google Scholar 

  31. Finer M, Jenkins CN (2012) Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7:e35126

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Goulding M (1980) The fishes and the forest: Explorations in Amazonian natural history. University of California Press, Berkeley

    Google Scholar 

  33. Grill G, Lehner B, Lumsdon AE, MacDonald GK, Zarfl C, Liermann CR (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ Res Lett 10:015001

    Article  Google Scholar 

  34. Haffer J (1994) Very small bird populations in Amazonia. In: Remmert H (ed) Minimum Animal Populations. Springer, Berlin, pp 105–117

    Chapter  Google Scholar 

  35. Hrbek T, da Silva VMF, Dutra N, Gravena W, Martin AR et al (2014) A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9:e83623

    Article  PubMed  PubMed Central  Google Scholar 

  36. ICMBio (Instituto Chico Mendes de Biodiversidade) (2012) Sumário Executivo do Plano de Ação Nacional para a Conservação das Espécies Endêmicas e Ameaçadas de Extinção da Fauna da Região do Baixo e Médio Xingu. ICMBIO, Brasília, DF, Brazil. http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/pan-xingu/sum%C3%A1rio_xingufauna.pdf

  37. IJHD (International Journal on Hydropower and Dams) (2010) World Atlas & Industry Guide. Int J Hydropower Dams. IJHD, Wallington, Surrey, UK

  38. Isaac VJ (2008) Diagnóstico ambiental da AHE- Belo Monte—Médio e Baixo Rio Xingu—Ictiofauna e pesca. Aproveitamento hidrelétrico Belo Monte Diagnóstico—estudo de impacto Ambiental sobre a fauna e flora da região do medio rio Xingu—UHE Belo Monte. Museu Goeldi, Belém, Pará, Brazil. http://licenciamento.ibama.gov.br/Hidreletricas/Belo%20Monte/EIA/Volume%2019%20-%20RELATORIOS%20MPEG%20ICTIOFAUNA/TEXTO/RELAT%D3RIO%20FINAL%20ICTIOFAUNA%20E%20PESCA%20V7.pdf

  39. Isbrucker IJH, Nijssen H (1991) Hypancistrus zebra, a new genus and species of uniquely pigmented ancistrine loricariid fish from the Rio Xingu, Brazil (Pisces: Siluriformes: Loricariidae). Ichthyol Explor Freshw 1:345–350

    Google Scholar 

  40. Junk WJ, Soares MGM, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat Ecosyst Health 10:153–173

    Article  Google Scholar 

  41. Kahn JR, Freitas CE, Petrere M (2014) False shades of green: the case of Brazilian Amazonian hydropower. Energies 7:6063–6082

    Article  Google Scholar 

  42. Killeen TJ (2007) A perfect storm in the Amazon Wilderness: development and conservation in the Context of the Initiative for the Integration of the Regional Infrastructure of South America (IIRSA). Conservation International, Arlington, VA, USA. http://www.conservation.org/publications/Documents/AABS.7_Perfect_storm_English.low.res.pdf

  43. Kumar A, Schei T, Ahenkorah A, Caceres Rodriguez R, Devernay J-M, Freitas M, Hall D, Killingtveit Å, Liu Z (2011) Hydropower. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC Special Report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 437–496

    Chapter  Google Scholar 

  44. Lees AC (2015) Fisheries: leave Brazil’s Red List alone. Nature 518:167

    CAS  Article  PubMed  Google Scholar 

  45. Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548

    Article  Google Scholar 

  46. Marques AAB, Peres CA (2015) Pervasive legal threats to protected areas in Brazil. Oryx 49:25–29

    Article  Google Scholar 

  47. McAllister DE, Craig JF, Davidson N, Delany S, Seddon M (2001) Biodiversity Impacts of Large Dams. Background Paper 1. Prepared for IUCN/UNEP/WCD. http://intranet.iucn.org/webfiles/doc/archive/2001/IUCN850.pdf

  48. McClain ME, Naiman RJ (2008) Andean influences on the biogeochemistry and ecology of the Amazon River. Bioscience 58:325–338

    Article  Google Scholar 

  49. Meybeck M, Ragu A (1996) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients. Environment Information and Assessment Report, UNEP, Paris

  50. Miranda-Chumacero G, Álvarez G, Luna V, Wallace RB, Painter L (2015) First observations on annual massive upstream migration of juvenile catfish Trichomycterus in an Amazonian River. Environ Biol Fishes 98:1913–1926

    Article  Google Scholar 

  51. MMA (Ministério do Meio Ambiente) Brasil (2014) Portarias no 443, 444, 445, de 17 de dezembro de 2014. Diário Oficial da União, Seção 1 (245):110–130, 18 Dezembro 2014

  52. MME (Ministério de Minas e Energia) (2011) Plano Nacional de Mineração 2030 (PNM—2030). MME, Brasília, DF, Brazil

    Google Scholar 

  53. MME/EPE (Ministério de Minas e Energia/Empresa de Pesquisa Energética) (2013) Plano Decenal de Expansão de Energia 2022. MME/EPE, Brasília, DF, Brazil. http://www.epe.gov.br/Estudos/Documents/PDE2022.pdf

  54. Moreira PF (ed.) (2012) Setor Elétrico Brasileiro e a Sustentabilidade no Século 21: Oportunidades e Desafios. 2a ed. Rios Internacionais, Brasília, DF, Brazil. http://www.internationalrivers.org/node/7525

  55. Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc Lond B Biol Sci 363:1737–1746

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    CAS  Article  PubMed  Google Scholar 

  57. Nogueira C, Buckup PA, Menezes NA, Oyakawa OT, Kasecker TP, Neto MBR, da Silva JMC (2010) Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS ONE 5:e11390

    Article  PubMed  PubMed Central  Google Scholar 

  58. Oliveira LJC, Costa MH, Soares-Filho BS, Coe MT (2013) Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ Res Lett 8:024021

    Article  Google Scholar 

  59. Palmeirim AF, Peres CA, Rosas FC (2014) Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol Conserv 174:30–38

    Article  Google Scholar 

  60. Pereira R (2013) Orçado em R$ 16 bilhões, custo da Usina de Belo Monte já supera os R$ 30 Bilhões. O Estado de S. Paulo, 11 May 2013. http://economia.estadao.com.br/noticias/geral,orcado-em-r-16-bilhoes-custo-da-usina-de-belo-monte-ja-supera-os-r-30-bilhoes,153398e

  61. Philbrick CT, Bove CP, Stevens HI (2010) Endemism in Neotropical Podostemaceae 1. Ann Missouri Bot Gard 97:425–456

    Article  Google Scholar 

  62. Poirier C (2012) Belo Sun Mining sets sights on golden opportunity in the Xingu. http://amazonwatch.org/news/2012/1005-belo-sun-mining-sets-sights-on-golden-opportunity-in-the-xingu

  63. Prado AP, Athayde S, Mossa J, BohlmanS Leite F, Oliver-Smith A (2016) How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renew Sustain Energy Rev 53:1132–1136

    Article  Google Scholar 

  64. Premalatha M, Abbasi T, Abbasi SA (2014) A critical view on the eco-friendliness of small hydroelectric installations. Sci Total Environ 481:638–643

    CAS  Article  PubMed  Google Scholar 

  65. RAISG (Rede Amazônica de Informação Socioambiental Georeferenciada) (2013) Amazonía Bajo Presión. Socio-Environmental Institute, São Paulo, SP, Brazil. http://www.raisg.socioambiental.org/amazonia-bajo-presion-2012

  66. Reis RE (2013) Conserving the freshwater fishes of South America. Int Zoo Yearb 47:65–70

    Article  Google Scholar 

  67. Ribeiro MCLDB, Petrere M, Juras AA (1995) Ecological integrity and fisheries ecology of the Araguaia—Tocantins River Basin, Brazil. Regul Rivers Res Manag 11:325–350

    Article  Google Scholar 

  68. Sá-Oliveira JC, Isaac VJ, Ferrari SF (2015a) Fish community structure as an indicator of the long-term effects of the damming of an Amazonian river. Regul Rivers Res Manag 98:273–286

    Google Scholar 

  69. Sá-Oliveira JC, Hawes JE, Isaac-Nahum VJ, Peres CA (2015b) Upstream and downstream responses of fish assemblages to an Eastern Amazonian hydroelectric dam. Freshw Biol 60:2037–2050

    Article  Google Scholar 

  70. Stickler CM, Coe MT, Costa MH, Nepstad DC, McGrath DG, Dias LC, Rodrigues HO, Soares-Filho BS (2013) Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc Nat Acad Sci USA 110:9601–9606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Sutherland WJ, Alves JA, Amano T, Chang CH, Davidson NC, Max Finlayson C, Gill JA, Thompson D (2012) A horizon scanning assessment of current and potential future threats to migratory shorebirds. Ibis 154:663–679

    Article  Google Scholar 

  72. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny ML (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129

    CAS  Article  PubMed  Google Scholar 

  73. Winzer C (2012) Conceptualizing energy security. Energy Policy 46:36–48

    Article  Google Scholar 

Download references

Acknowledgments

We thank Priscilla Amaral for additional information and Leandro Sousa for the use of his fish images. ACL, JZ and PMF thank CNPq for funding. CAP was funded by a CAPES Grant (PVE 004/2012) during this writing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander C. Lees.

Additional information

Communicated by Karen E. Hodges.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lees, A.C., Peres, C.A., Fearnside, P.M. et al. Hydropower and the future of Amazonian biodiversity. Biodivers Conserv 25, 451–466 (2016). https://doi.org/10.1007/s10531-016-1072-3

Download citation

Keywords

  • Freshwater
  • Connectivity
  • Fish
  • Endemic
  • Mining
  • Deforestation