Biodiversity and Conservation

, Volume 25, Issue 12, pp 2233–2250 | Cite as

Patterns and drivers of phytodiversity in steppe grasslands of Central Podolia (Ukraine)

  • Anna A. KuzemkoEmail author
  • Manuel J. Steinbauer
  • Thomas Becker
  • Yakiv P. Didukh
  • Christian Dolnik
  • Michael Jeschke
  • Alireza Naqinezhad
  • Emin Uğurlu
  • Kiril Vassilev
  • Jürgen Dengler
Original Paper


We asked: (i) Which environmental factors determine the level of α-diversity at several scales and β-diversity in steppic grasslands? (ii) How do the effects of environmental factors on α- and β-diversity vary between the different taxonomic groups (vascular plants, bryophytes, lichens)? We sampled nested-plot series ranging from 0.0001 to 100 m2 and additional 10-m2 plots, covering different vegetation types and management regimes in steppes and semi-natural dry grasslands of Central Podolia (Ukraine). We recorded all terricolous taxa and used topographic, soil, land-use and climatic variables as predictors. Richness-environment relationships at different scales and across taxonomic groups were assessed with multimodel inference. We also fitted power-law species-area relationships, using the exponent (z value) as a measure of β-diversity. In general, the richness values in the study region were intermediate compared to those known from similar grasslands throughout the Palaearctic, but for 1 cm2 we found seven species of vascular plants, a new world record. Heat index was the most important factor for vascular plants and bryophytes (negative relation), while lichen diversity depended mainly on stone and rock cover (positive). The explanatory power of climate-related variables increased with increasing grain size, while anthropogenic burning was the most important factor for richness patterns at the finest grain sizes (positive effect). The z values showed more variation at the finest grain sizes, but no significant differences in their mean between scales. The results highlight the importance of integrating scale into ecological analyses and nature conservation assessments in order to understand and manage biological diversity in steppe ecosystems.


Biodiversity Bryophyte Lichen Scale dependence Species-area relationship Species richness 



The study was jointly planned by J.D. (methodology) and A.A.K. (site selection and field work). A.A.K, T.B., Y.P.D., A.N. E.U., K.V. and J.D. were involved in the field sampling, while C.D. and M.J. determined critical cryptogams, and T.P. analysed the soil samples. M.J.S. (multimodel inference) and J.D. (species-area relationships) carried out the statistical analyses. The text was drafted by A.A.K, J.D. and M.J.S. while all authors critically revised it. We thank Ioana Violeta Ardelean, Ute Becker, Monica Beldean, Ina Cultasov, Thomas Haberler, Yulia Kazmirova, Igor Kuzemko, Aslan Ünal, Evgeniy I. Vorona and Olena H. Yavorska for their invaluable help with the field sampling, the Förderkreis für Allgemeine Naturkunde (Biologie) ( and the European Dry Grassland Group (EDGG; for financial support of the research expedition as well as the International Association for Vegetation Science (IAVS; and BAYHOST (, which made the three short research stays of the first author in the groups of the last author in Hamburg and Bayreuth possible, during which the analyses were conducted and the paper drafted. Laura Sutcliffe kindly polished our English language usage. Finally, we thank the co-ordinating editor, Péter Török, and two anonymous reviewers for their thoughtful comments, which contributed significantly to the improvement of the manuscript.

Supplementary material

10531_2016_1060_MOESM1_ESM.pdf (107 kb)
Supplementary material 1 (PDF 106 kb)
10531_2016_1060_MOESM2_ESM.pdf (98 kb)
Supplementary material 2 (PDF 97 kb)


  1. Alekhin VV (1986) Theoretical problems of the phytocenology and steppe science. Moscow University Publishing House, MoscowGoogle Scholar
  2. Bartoń K (2015) MuMIn: Multi-Model Inference. R package version 1.14.0.*checkout*/www/MuMIn-manual.pdf?revision=347&root=mumin. Accessed 1 Jan 2016
  3. Becker T, Brändel M (2007) Vegetation-environment relationship in a heavy metal-dry grassland complex. Folia Geobot 42:11–28CrossRefGoogle Scholar
  4. Bilyk HI (1973a) Basic patterns of distribution of the steppes vegetation of USSR. In: Barbarich AI (ed) Vegetation of the UkrSSR. Steppes, rocky outcrops, sands. Naukova Dumka, Kyiv, pp 14–18Google Scholar
  5. Bilyk HI (1973b) Mesoxerophytic grassland. In: Barbarich AI (ed) Vegetation of the UkrSSR. Steppes, rocky outcrops, sands. Naukova Dumka, Kyiv, pp 33–94Google Scholar
  6. Bilyk HI (1977) Euro-Siberian forest-steppe region. Geobotanical zonation of the USSR. Naukova Dumka, Kyiv, pp 140–195Google Scholar
  7. Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36Google Scholar
  8. Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Raus T, Schlüter H, Weber H, Hennekens S (eds) (2004) Map of the natural vegetation of Europe. Scale 1 : 2 500 000. Interactive CD-ROM: explanatory text, legend, maps. Bundesamt für Naturschutz, BonnGoogle Scholar
  9. Burkovsky OP, Vasyliuk OV, Yena AV, Kuzemko AA, Movchan YI, Moysienko II, Sirenko IP (2013) Last steppes of Ukraine: to be or not to be. Geoprynt, KyivGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  11. Chytrý M, Dražil T, Hájek M, Kalnóková V, Preslerová Z, Šibik J, Ujházy K, Axmanová I, Bernátová D et al (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278Google Scholar
  12. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310CrossRefPubMedGoogle Scholar
  13. Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113:791–833CrossRefGoogle Scholar
  14. de Bello F, Lepš J, Sebastià MT (2007) Grazing effects on the species-area relationship: variation along a climatic gradient in NE Spain. J Veg Sci 18:25–34CrossRefGoogle Scholar
  15. Dengler J (2005) Zwischen Estland und Portugal: Gemeinsamkeiten und Unterschiede der Phytodiversitätsmuster europäischer Trockenrasen. Tuexenia 25:387–405Google Scholar
  16. Dengler J (2009a) Which function describes the species-area relationship best? a review and empirical evaluation. J Biogeogr 36:728–744CrossRefGoogle Scholar
  17. Dengler J (2009b) A flexible multi-scale approach for standardised recording of plant species richness patterns. Ecol Indic 9:1169–1178CrossRefGoogle Scholar
  18. Dengler J, Boch S (2008) Sampling-design effects on properties of species-area curves: a case study from Estonian dry grassland communities. Folia Geobot 43:289–304CrossRefGoogle Scholar
  19. Dengler J, Becker T, Ruprecht E, Szabó A, Becker U, Beldean M, Bita-Nicolae C, Dolnik C, Goia I, Peyrat J, Sutcliffe LME, Turtureanu PD, Uğurlu E (2012) Festuco-Brometea communities of the Transylvanian Plateau (Romania): a preliminary overview on syntaxonomy, ecology, and biodiversity. Tuexenia 32:319–359Google Scholar
  20. Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14CrossRefGoogle Scholar
  21. Didukh YP, Shelyag-Sosonko YR (2003) Geobotanic zoning of Ukraine and adjacent areas. Ukr Bot J 60(1):6–17 (in Ukrainian) Google Scholar
  22. Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol Lett 9:215–227CrossRefPubMedGoogle Scholar
  23. Dupré C, Diekmann M (2001) Differences in species richness and life-history traitsbetween grazed and abandoned grasslands in southern Sweden. Ecography 24:275–286CrossRefGoogle Scholar
  24. Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366CrossRefGoogle Scholar
  25. Giladi I, Ziv Y, May F, Jeltsch F (2011) Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem. J Veg Sci 22:983–996CrossRefGoogle Scholar
  26. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347CrossRefGoogle Scholar
  27. Habel JC, Dengler J, Janišová M, Török P, Wellstein C, Wiezik M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138CrossRefGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  29. Hopp D, Dengler J (2015) Scale-dependent species diversity in a semi-dry basiphilous grassland (Bromion erecti) of Upper Franconia (Germany). Bull Eurasian Dry Grassl Group 28:10–15Google Scholar
  30. Kleiber C, Zeileis A (2008) Applied econometrics with R. Springer, New YorkCrossRefGoogle Scholar
  31. Korotchenko I, Peregrym M (2012) Ukrainian steppes in the past at present and in the future. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 173–196CrossRefGoogle Scholar
  32. Kuzemko AA, Becker T, Didukh YP, Ardelean IV, Becker U, Beldean M, Dolnik C, Jeschke M, Naqinezhad A, Uğurlu E, Ünal A, Vassilev K, Vorona EI, Yavorska OH, Dengler J (2014) Dry grassland vegetation of Central Podolia (Ukraine): a preliminary overview of its syntaxonomy, ecology and biodiversity. Tuexenia 34:391–430Google Scholar
  33. Liamine N (ed) (2002a) The continental biogeographical region: agriculture, fragmentation and big rivers. Eur Environ Agency. Accessed 28 Sept 2015
  34. Liamine N (ed) (2002b) The steppic region: the plains of Europe. Eur Environ Agency. Accessed 28 Sept 2015
  35. Lipinsky VM, Diachuk VA, Babichenko VM (eds) (2003) Climate of Ukaine. Vyd-vo Rayevs’kogo, Kyiv (in Ukrainian)Google Scholar
  36. Löbel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: the effects of environment, landscape structure and competition. Folia Geobot 41:377–393CrossRefGoogle Scholar
  37. Merunková K, Preislerová Z, Chytrý M (2014) Environmental drivers of species composition and richness in dry grasslands of northern and central Bohemia, Czech Republic. Tuexenia 34:447–466Google Scholar
  38. Moysienko II, Zachwatowicz M, Sudnik-Wójcikowska B, Jabłońska E (2014) Kurgans help to protect endangered steppe species in the Pontic grass steppe zone, Ukraine. Wulfenia 21:83–94Google Scholar
  39. Müller J, Klaus VH, Kleinebecker T, Prati D, Hölzel N, Fischer M (2012) Impact of land-use intensity and productivity on bryophyte diversity in agricultural grasslands. PLoS One 7:e51520. doi: 10.1371/journal.pone.0051520 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Olsson PA, Mårtensson LM, Bruun HH (2009) Acidification of sandy grasslands: consequences for plant diversity. Appl Veg Sci 12:350–361CrossRefGoogle Scholar
  41. Palpurina S, Chytrý M, Tzonev R, Danihelka J, Axmanová I, Merunková K, Duchoň M, Karakiev T (2015) Patterns of fines-scale plant species richness in dry grasslands across the eastern Balkan Peninsula. Acta Oecol 63:36–46CrossRefGoogle Scholar
  42. Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366CrossRefGoogle Scholar
  43. Pedashenko H, Apostolova I, Boch S, Ganeva A, Janisová M, Sopotlieva D, Todorova S, Ünal A, Vassilev K, Velev N, Dengler J (2013) Dry grasslands of NW Bulgarian mountains: first insights into diversity, ecology and syntaxonomy. Tuexenia 33:309–346Google Scholar
  44. Reed RA, Peet RK, Palmer MW, White PS (1993) Scale dependence of vegetation-environment correlations: a case study of a North Carolina piedmont woodland. J Veg Sci 4:329–340CrossRefGoogle Scholar
  45. Roleček J, Čornej II, Tokarjuk AI (2014) Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34Google Scholar
  46. Schuster B, Diekmann M (2003) Changes in species density along the soil pH gradient: evidence from German plant communities. Folia Geobot 38:367–379CrossRefGoogle Scholar
  47. Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20CrossRefGoogle Scholar
  48. Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD (2012) Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data. J Veg Sci 23:942–951CrossRefGoogle Scholar
  49. Škornik S, Vidrih M, Kaligarič M (2010) The effect of grazing pressure on species richness, composition nd productivity in North Adriatic Karst pastures. Plant Biosyst 144:355–364CrossRefGoogle Scholar
  50. Solomakha VA (2008) The syntaxonomy of vegetation of the Ukraine. The third approximation, Phytosociocentre, Kyiv (in Ukrainian)Google Scholar
  51. Tamme R, Hiiesalu I, Laanisto L, Szava-Kovats R, Pärtel M (2010) Environmental heterogeneity, species diversity and co-existence at different spatial scales. J Veg Sci 21:796–801Google Scholar
  52. Turtureanu PD, Palpurina S, Becker T, Dolnik C, Ruprecht E, Sutcliffe LME, Szabó A, Dengler J (2014) Scale- and taxon-dependent biodiversity patterns of dry grassland vegetation in Transylvania. Agric Ecosyst Environ 182:15–24CrossRefGoogle Scholar
  53. Vrahnakis MS, Janišová M, Rūsiņa S, Török P, Venn S, Dengler J (2013) The European Dry Grassland Group (EDGG): stewarding Europe’s most diverse habitat type. In: Baumbach H, Pfützenreuter S (eds) Steppenlebensräume Europas: Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt, pp 417–434Google Scholar
  54. Werger MJA, van Staalduinen MA (eds) (2012) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, DordrechtGoogle Scholar
  55. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anna A. Kuzemko
    • 1
    Email author
  • Manuel J. Steinbauer
    • 2
  • Thomas Becker
    • 3
  • Yakiv P. Didukh
    • 4
  • Christian Dolnik
    • 5
  • Michael Jeschke
    • 3
  • Alireza Naqinezhad
    • 6
  • Emin Uğurlu
    • 7
  • Kiril Vassilev
    • 8
  • Jürgen Dengler
    • 9
    • 10
  1. 1.National Dendrological Park “Sofiyvka”National Academy of Sciences of UkraineUmanUkraine
  2. 2.Section Ecoinformatics & Biodiversity, Department of BioscienceAarhus UniversityAarhusDenmark
  3. 3.Geobotany, Faculty of Geography and GeosciencesUniversity of TrierTrierGermany
  4. 4.M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineKievUkraine
  5. 5.Institute for Natural Resource Conservation, Ecology CentreUniversity of KielKielGermany
  6. 6.Department of Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
  7. 7.Department of Biology Science and Art FacultyCelal Bayar UniversityManisaTurkey
  8. 8.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  9. 9.Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  10. 10.Synthesis Centre (sDiv)German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations