Biodiversity and Conservation

, Volume 25, Issue 2, pp 331–344 | Cite as

Conservation of reef corals in the South China Sea based on species and evolutionary diversity

  • Danwei Huang
  • Bert W. Hoeksema
  • Yang Amri Affendi
  • Put O. Ang
  • Chaolun A. Chen
  • Hui Huang
  • David J. W. Lane
  • Wilfredo Y. Licuanan
  • Ouk Vibol
  • Si Tuan Vo
  • Thamasak Yeemin
  • Loke Ming Chou
Original Paper

Abstract

The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic diversity among 16 reef areas in the region to estimate changes in species and evolutionary diversity during projected anthropogenic extinctions. Our results show that richness, rarity, and phylogenetic diversity differ considerably among reef areas in the region, and that their outcomes following projected extinctions cannot be predicted by species diversity alone. Although relative rarity and threat levels are high in species-rich areas such as West Malaysia and the Philippines, areas with fewer species such as northern Vietnam and Paracel Islands stand to lose disproportionately large amounts of phylogenetic diversity. Our study quantifies various biodiversity components of each reef area to inform conservation planners and better direct sparse resources to areas where they are needed most. It also provides a critical biological foundation for targeting reefs that should be included in a regional network of marine protected areas in the South China Sea.

Keywords

IUCN Red List Marine biodiversity Phylogenetic diversity Rarity Scleractinia Species richness 

Supplementary material

10531_2016_1052_MOESM1_ESM.xls (80 kb)
Supplementary material 1 (XLS 80 kb)
10531_2016_1052_MOESM2_ESM.pdf (124 kb)
Supplementary material 2 (PDF 124 kb)

References

  1. Altschul SF, Lipman DL (1990) Equal Anim. Nature 348:493–494. doi:10.1038/348493c0 CrossRefPubMedGoogle Scholar
  2. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893. doi:10.1007/s10531-012-0242-1 CrossRefGoogle Scholar
  3. Barbeitos MS, Romano SL, Lasker HR (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Natl Acad Sci USA 107:11877–11882. doi:10.1073/pnas.0914380107 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Beger M, McGowan J, Treml EA et al (2015) Integrating regional conservation priorities for multiple objectives into national policy. Nat Commun 6:8208. doi:10.1038/ncomms9208 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285. doi:10.1046/j.1461-0248.2003.00432.x CrossRefGoogle Scholar
  6. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833. doi:10.1038/nature02691 CrossRefPubMedGoogle Scholar
  7. Bellwood DR, Hughes TP, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439. doi:10.1016/j.cub.2006.10.030 CrossRefPubMedGoogle Scholar
  8. Bennett JR, Elliott G, Mellish B et al (2014) Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biol Conserv 174:47–54. doi:10.1016/j.biocon.2014.03.013 CrossRefGoogle Scholar
  9. Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc Natl Acad Sci USA 110:8996–9000. doi:10.1073/pnas.1301685110 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017. doi:10.1073/pnas.0805962105 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. doi:10.1111/j.1365-2664.2011.02048.x CrossRefGoogle Scholar
  12. Carpenter KE, Abrar M, Aeby GS et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563. doi:10.1126/science.1159196 CrossRefPubMedGoogle Scholar
  13. Chong-Seng KM, Mannering TD, Pratchett MS et al (2012) The influence of coral reef benthic condition on associated fish assemblages. PLoS One 7:e42167. doi:10.1371/journal.pone.0042167 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Clifton J (2009) Science, funding and participation: key issues for marine protected area networks and the Coral Triangle Initiative. Environ Conserv 36:91–96. doi:10.1017/S0376892909990075 CrossRefGoogle Scholar
  15. Curnick DJ, Head CEI, Huang D et al (2015) Setting evolutionary-based conservation priorities for a phylogenetically data-poor taxonomic group (Scleractinia). Anim Conserv 18:303–312. doi:10.1111/acv.12185 CrossRefGoogle Scholar
  16. D’agata S, Mouillot D, Kulbicki M et al (2014) Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr Biol 24:555–560. doi:10.1016/j.cub.2014.01.049 CrossRefPubMedGoogle Scholar
  17. Darling ES, Alvarez-Filip L, Oliver TA et al (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386. doi:10.1111/j.1461-0248.2012.01861.x CrossRefPubMedGoogle Scholar
  18. Darling ES, McClanahan TR, Côté IM (2013) Life histories predict coral community disassembly under multiple stressors. Glob Chang Biol 19:1930–1940. doi:10.1111/gcb.12191 CrossRefPubMedGoogle Scholar
  19. Davies TJ, Fritz SA, Grenyer R et al (2008) Phylogenetic trees and the future of mammalian biodiversity. Proc Natl Acad Sci USA 105:11556–11563. doi:10.1073/pnas.0801917105 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Devictor V, Mouillot D, Meynard C et al (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 3:1030–1040. doi:10.1111/j.1461-0248.2010.01493.x Google Scholar
  21. Díaz M, Madin JS (2011) Macroecological relationships between coral species’ traits and disease potential. Coral Reefs 30:73–84. doi:10.1007/s00338-010-0668-4 CrossRefGoogle Scholar
  22. Fabricius KE, De’ath G, Noonan S, Uthicke S (2014) Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc Roy Soc B-Biol Sci 281:20132479. doi:10.1098/rspb.2013.2479 CrossRefGoogle Scholar
  23. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi:10.1016/0006-3207(92)91201-3 CrossRefGoogle Scholar
  24. Faith DP, Magallón S, Hendry AP et al (2010) Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr Opin Environ Sustain 2:66–74. doi:10.1016/j.cosust.2010.04.002 CrossRefGoogle Scholar
  25. Flynn DFB, Mirotchnick N, Jain M et al (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581. doi:10.1890/10-1245.1 CrossRefPubMedGoogle Scholar
  26. Forest F, Grenyer R, Rouget M et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760. doi:10.1038/nature05587 CrossRefPubMedGoogle Scholar
  27. Fritz SA, Purvis A (2010) Phylogenetic diversity does not capture body size variation at risk in the world’s mammals. Proc Roy Soc B 277:2435–2441. doi:10.1098/rspb.2010.0030 CrossRefGoogle Scholar
  28. Gaston KJ (1994) Rarity. Chapman & Hall, LondonCrossRefGoogle Scholar
  29. Gittenberger A, Reijnen BT, Hoeksema BW (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contrib Zool 80:107–132Google Scholar
  30. Graham NAJ, Wilson SK, Jennings S et al (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci USA 103:8425–8429. doi:10.1073/pnas.0600693103 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Harnik PG, Simpson C, Payne JL (2012) Long-term differences in extinction risk among the seven forms of rarity. Proc Roy Soc B 279:4969–4976. doi:10.1098/rspb.2012.1902 CrossRefGoogle Scholar
  32. Hoeksema BW (1989) Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zool Verh Leiden 254:1–295Google Scholar
  33. Hoeksema BW (1993) Historical biogeography of Fungia (Pleuractis) spp. (Scleractinia: Fungiidae), including a new species from the Seychelles. Zool Meded Leiden 67:639–654Google Scholar
  34. Hoeksema BW (2012) Evolutionary trends in onshore-offshore distribution patterns of mushroom coral species (Scleractinia: Fungiidae). Contrib Zool 81:199–221Google Scholar
  35. Hoeksema BW (2015) Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s. Estuar Coast Shelf Sci 165:190–198. doi:10.1016/j.ecss.2015.05.015 CrossRefGoogle Scholar
  36. Hoeksema BW, van der Meij SET, Fransen CHJM (2012) The mushroom coral as a habitat. J Mar Biol Assoc UK 92:647–663. doi:10.1017/S0025315411001445 CrossRefGoogle Scholar
  37. Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922 CrossRefGoogle Scholar
  38. Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. doi:10.1038/nature11118 PubMedGoogle Scholar
  39. Huang D (2012) Threatened reef corals of the world. PLoS One 7:e34459. doi:10.1371/journal.pone.0034459 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Huang D, Roy K (2013) Anthropogenic extinction threats and future loss of evolutionary history in reef corals. Ecol Evol 3:1184–1193. doi:10.1002/ece3.527 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Huang D, Licuanan WY, Hoeksema BW et al (2015) Extraordinary diversity of reef corals in the South China Sea. Mar Biodivers 45:157–168. doi:10.1007/s12526-014-0236-1 CrossRefGoogle Scholar
  42. Idjadi JA, Edmunds PJ (2006) Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar Ecol Prog Ser 319:117–127. doi:10.3354/meps319117 CrossRefGoogle Scholar
  43. Isaac NJB, Turvey ST, Collen B et al (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2:e296. doi:10.1371/journal.pone.0000296 PubMedCentralCrossRefPubMedGoogle Scholar
  44. IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1. IUCN, Gland, Switzerland and CambridgeGoogle Scholar
  45. Jain M, Flynn DFB, Prager CM et al (2014) The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol Evol 4:104–112. doi:10.1002/ece3.915 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Jones AM, Berkelmans R, Houston W (2011) Species richness and community structure on a high latitude reef: implications for conservation and management. Diversity 3:329–355. doi:10.3390/d3030329 CrossRefGoogle Scholar
  47. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi:10.1093/bioinformatics/btq166 CrossRefPubMedGoogle Scholar
  48. Kimura T, Dai C-F, Park H-S et al (2008) Status of coral reefs in East and North Asia (China, Hong Kong, Taiwan, South Korea and Japan). In: Wilkinson C (ed) Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, pp 145–158Google Scholar
  49. Klein CJ, Ban NC, Halpern BS et al (2010) Prioritizing land and sea conservation investments to protect coral reefs. PLoS One 5:e12431. doi:10.1371/journal.pone.0012431 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2004) Contribution of rarity and commonness to patterns of species richness. Ecol Lett 7:81–87. doi:10.1046/j.1461-0248.2004.00548.x CrossRefGoogle Scholar
  51. Leroy B, Petillon J, Gallon R et al (2012) Improving occurrence-based rarity metrics in conservation studies by including multiple rarity cut-off points. Insect Conserv Divers 5:159–168. doi:10.1111/j.1752-4598.2011.00148.x CrossRefGoogle Scholar
  52. Leroy B, Canard A, Ysnel F (2013) Integrating multiple scales in rarity assessments of invertebrate taxa. Divers Distrib 19:794–803. doi:10.1111/ddi.12040 CrossRefGoogle Scholar
  53. Lyons KG, Brigham CA, Traut BH, Schwartz MW (2005) Rare species and ecosystem functioning. Conserv Biol 19:1019–1024. doi:10.1111/j.1523-1739.2005.00106.x CrossRefGoogle Scholar
  54. Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300:1707–1709. doi:10.1126/science.1085510 CrossRefPubMedGoogle Scholar
  55. Madin EMP (2015) Halt reef destruction in South China Sea. Nature 524:291. doi:10.1038/524291a CrossRefPubMedGoogle Scholar
  56. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. doi:10.1126/science.1143082 CrossRefPubMedGoogle Scholar
  57. May RM (1990) Taxonomy as destiny. Nature 347:129–130. doi:10.1038/347129a0 CrossRefGoogle Scholar
  58. McCann KS (2000) The diversity–stability debate. Nature 405:228–233. doi:10.1038/35012234 CrossRefPubMedGoogle Scholar
  59. McManus JW (1994) The Spratly Islands: a marine park? Ambio 23:181–186Google Scholar
  60. McManus JW (1997) Tropical marine fisheries and the future of coral reefs: a brief review with emphasis on Southeast Asia. Coral Reefs 16:S121–S127. doi:10.1007/s003380050248 CrossRefGoogle Scholar
  61. McManus JW, Meñez LAB (1997) The proposed international Spratly Island marine park: ecological considerations. In: Proceedings of the 8th international coral reef symposium, vol 2, pp 1943–1948Google Scholar
  62. McManus JW, Shao K-T, Lin S-Y (2010) Toward establishing a Spratly Islands international Marine Peace Park: ecological importance and supportive collaborative activities with an emphasis on the role of Taiwan. Ocean Dev Int Law 41:270–280. doi:10.1080/00908320.2010.499303 CrossRefGoogle Scholar
  63. MOE Japan (2010) ICRI East Asia regional strategy on MPA Networks 2010. Ministry of the Environment, TokyoGoogle Scholar
  64. Morton B, Blackmore G (2001) South China Sea. Mar Pollut Bull 42:1236–1263CrossRefPubMedGoogle Scholar
  65. Mouillot D, Bellwood DR, Baraloto C et al (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569. doi:10.1371/journal.pbio.1001569 PubMedCentralCrossRefPubMedGoogle Scholar
  66. Mouillot D, Villéger S, Parravicini V et al (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci USA 111:13757–13762. doi:10.1073/pnas.1317625111 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Murdoch W, Polasky S, Wilson KA et al (2007) Maximizing return on investment in conservation. Biol Conserv 139:375–388. doi:10.1016/j.biocon.2007.07.011 CrossRefGoogle Scholar
  68. Nee S, May RM (1997) Extinction and the loss of evolutionary history. Science 278:692–694. doi:10.1126/science.278.5338.692 CrossRefPubMedGoogle Scholar
  69. Nyström M (2006) Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35:30–35. doi:10.1579/0044-7447-35.1.30 CrossRefPubMedGoogle Scholar
  70. Orme CDL, Davies RG, Burgess M et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019. doi:10.1038/nature03850 CrossRefPubMedGoogle Scholar
  71. Orme CDL, Freckleton RP, Thomas GH, et al. (2013) caper: Comparative Analyses of Phylogenetics and Evolution in R. R Package Version 0.5.2. http://caper.r-forge.r-project.org. Accessed 19 Feb 2014
  72. Parhar RK, Mooers AØ (2011) Phylogenetically clustered extinction risks do not substantially prune the Tree of Life. PLoS One 6:e23528. doi:10.1371/journal.pone.0023528 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Posadas P, Esquivel DRM, Crisci JV (2001) Using phylogenetic diversity measures to set priorities in conservation: an example from southern South America. Conserv Biol 15:1325–1334CrossRefGoogle Scholar
  74. Pratchett MS, Wilson SK, Graham NAJ, Munday PL (2009) Coral bleaching and consequences for motile reef organisms: past, present and uncertain future effects. In: van Oppen MJH, Lough JM (eds) Ecological studies: coral bleaching. Springer, Berlin, pp 139–158CrossRefGoogle Scholar
  75. Prendergast PR, Quinn RM, Lawton JH et al (2002) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337. doi:10.1038/365335a0 CrossRefGoogle Scholar
  76. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219. doi:10.1038/35012221 CrossRefPubMedGoogle Scholar
  77. Purvis A, Agapow P-M, Gittleman JL, Mace GM (2000) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330. doi:10.1126/science.288.5464.328 CrossRefPubMedGoogle Scholar
  78. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 19 Feb 2014
  79. Randall JE, Lim KKP (2000) A checklist of the fishes of the South China Sea. Raffles Bull Zool Suppl 8:569–667Google Scholar
  80. Robbirt KM, Roberts DL, Hawkins JA (2006) Comparing IUCN and probabilistic assessments of threat: do IUCN red list criteria conflate rarity and threat? Biodivers Conserv 15:1903–1912. doi:10.1007/s10531-005-4307-2 CrossRefGoogle Scholar
  81. Roberts CM, McClean CJ, Veron JEN et al (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284. doi:10.1126/science.1067728 CrossRefPubMedGoogle Scholar
  82. Rodrigues ASL, Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol Conserv 105:103–111. doi:10.1016/S0006-3207(01)00208-7 CrossRefGoogle Scholar
  83. Rosauer DF, Mooers AØ (2013) Nurturing the use of evolutionary diversity in nature conservation. Trends Ecol Evol 28:322–323. doi:10.1016/j.tree.2013.01.014 CrossRefPubMedGoogle Scholar
  84. Sechrest W, Brooks TM, da Fonseca GAB et al (2002) Hotspots and the conservation of evolutionary history. Proc Natl Acad Sci USA 99:2067–2071. doi:10.1073/pnas.251680798 PubMedCentralCrossRefPubMedGoogle Scholar
  85. Tun K, Chou LM, Yeemin T et al (2008) Status of coral reefs in Southeast Asia. In: Wilkinson C (ed) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, pp 131–144Google Scholar
  86. UNEP (2007) Reversing environmental degradation trends in the South China Sea and Gulf of Thailand. Report of the Eighth Meeting of the Regional Working Group on Coral Reefs. UNEP/GEF/SCS/RWG-CR.8/3, BangkokGoogle Scholar
  87. Vamosi JC, Wilson JRU (2008) Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecol Lett 11:1047–1053. doi:10.1111/j.1461-0248.2008.01215.x CrossRefPubMedGoogle Scholar
  88. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—systematics and the agony of choice. Biol Conserv 55:235–254. doi:10.1016/0006-3207(91)90030-D CrossRefGoogle Scholar
  89. Veron JEN, DeVantier LM, Turak E et al (2009) Delineating the Coral Triangle. Galaxea 11:91–100. doi:10.3755/galaxea.11.91 CrossRefGoogle Scholar
  90. Veron JEN, DeVantier LM, Turak E et al (2011) The Coral Triangle. In: Dubinsky Z, Stambler N (eds) Coral Reefs: an ecosystem in transition. Springer, Dordrecht, pp 47–55CrossRefGoogle Scholar
  91. Veron J, Stafford-Smith M, DeVantier L, Turak E (2015) Overview of distribution patterns of zooxanthellate Scleractinia. Front Mar Sci 1:81. doi:10.3389/fmars.2014.00081 CrossRefGoogle Scholar
  92. Vo ST, Pernetta JC, Paterson CJ (2013) Status and trends in coastal habitats of the South China Sea. Ocean Coast Manag 85:153–163. doi:10.1016/j.ocecoaman.2013.02.018 CrossRefGoogle Scholar
  93. Vo ST, DeVantier LM, Tuyen HT, Hoàng PK (2014) Ninh Hai waters (south Vietnam): a hotspot of reef corals in the western South China Sea. Raffles Bull Zool 62:513–520Google Scholar
  94. Waheed Z, Hoeksema BW (2013) A tale of two winds: species richness patterns of reef corals around the Semporna peninsula, Malaysia. Mar Biodivers 43:37–51. doi:10.1007/s12526-012-0130-7 CrossRefGoogle Scholar
  95. Walton A, White AT, Tighe S et al (2014) Establishing a functional region-wide Coral Triangle Marine Protected Area System. Coast Manag 42:107–127. doi:10.1080/08920753.2014.877765 CrossRefGoogle Scholar
  96. White AT, Aliño PM, Cros A et al (2014) Marine protected areas in the Coral Triangle: progress, issues, and options. Coast Manag 42:87–106. doi:10.1080/08920753.2014.878177 CrossRefGoogle Scholar
  97. Wilson SK, Graham NAJ, Pratchett MS et al (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234. doi:10.1111/j.1365-2486.2006.01252.x CrossRefGoogle Scholar
  98. Witting L, Loeschcke V (1995) The optimization of biodiversity conservation. Biol Conserv 71:205–207. doi:10.1016/0006-3207(94)00041-N CrossRefGoogle Scholar
  99. Zhang SY, Speare KE, Long ZT et al (2014) Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2:e308. doi:10.7717/peerj.308 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Danwei Huang
    • 1
  • Bert W. Hoeksema
    • 2
  • Yang Amri Affendi
    • 3
  • Put O. Ang
    • 4
  • Chaolun A. Chen
    • 5
    • 6
  • Hui Huang
    • 7
    • 8
  • David J. W. Lane
    • 9
  • Wilfredo Y. Licuanan
    • 10
  • Ouk Vibol
    • 11
  • Si Tuan Vo
    • 12
  • Thamasak Yeemin
    • 13
  • Loke Ming Chou
    • 1
  1. 1.Department of Biological Sciences and Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
  2. 2.Naturalis Biodiversity CenterLeidenThe Netherlands
  3. 3.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  4. 4.Marine Science LaboratoryChinese University of Hong KongHong Kong SarChina
  5. 5.Biodiversity Research Center and Taiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
  6. 6.Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
  7. 7.Tropical Marine Biological Research Station in HainanSanyaChina
  8. 8.Key Laboratory of Marine Bio-resources Sustainable UtilizationSouth China Sea Institute of Oceanology, CASGuangzhouChina
  9. 9.Department of Biological SciencesUniversiti Brunei DarussalamBandar Seri BegawanBrunei Darussalam
  10. 10.Br. Alfred Shields FSC Ocean Research Center and Biology DepartmentDe La Salle UniversityManilaThe Philippines
  11. 11.Department of Fisheries Conservation, Fisheries AdministrationMinistry of Agriculture, Forestry and FisheriesPhnom PenhCambodia
  12. 12.Institute of OceanographyVietnam Academy of Science and TechnologyNha TrangVietnam
  13. 13.Marine Biodiversity Research Group, Department of BiologyRamkhamhaeng UniversityBangkokThailand

Personalised recommendations