Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change?

Abstract

Climate change and habitat degradation due to land use are the key factors threatening biodiversity. It is important to study both the separate and joined effects of climate warming and land use on biodiversity. In this work long-term population changes of southern boreal forest birds were studied in relation to climate change and direct habitat alteration due to forestry. The study was based on annually repeated bird censuses in 23 consecutive years (1993–2015) in a managed forest landscape. Results were compared with population changes in protected areas where logging is not allowed. During the study period, total bird density declined by 18 % with a change in the bird community composition. Out of the 12 most abundant species seven showed a significant negative trend and only one species a positive trend. Population declines could be connected with the direct alteration of habitat as a consequence of forestry or with the effect of climate change in the case of those species which declined also in protected areas. The increased species are abundant across Europe in human-modified habitats. Due to habitat alteration and climate warming, specific characteristics of southern boreal forest bird communities are changing with communities representing a pattern towards global homogenization. Thus, habitat alteration strengthens the negative effects of climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539. doi:10.1890/11-1930.1

    PubMed  Article  Google Scholar 

  2. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    PubMed  PubMed Central  Article  Google Scholar 

  3. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife International, Cambridge

    Google Scholar 

  4. BirdLife International (2015) European Red List of Birds. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  5. Brommer JE, Lehikoinen A, Valkama J (2012) The breeding ranges of Central European and arctic bird species move poleward. Plos One 7(9):e43648. doi:10.1371/journal.pone.0043648

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  6. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512

    PubMed  CAS  Article  Google Scholar 

  7. Carlson A (1994) Cavity breeding birds and clearcuts. Ornis Fenn 71:120–122

    Google Scholar 

  8. Chen I-C, Hill JK, Ohleműller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

    PubMed  CAS  Article  Google Scholar 

  9. Edenius L, Brodin T, White N (2004) Occurrence of Siberian jay Perisoreus infaustus in relation to amount of old forest at landscape and home range scales. Ecol Bull 51:241–247

    Google Scholar 

  10. Eggers S, Low M (2014) Differential demographic responses of sympatric Parids to vegetation management in boreal forest. For Ecol Manag 319:169–175. doi:10.1016/j.foreco.2014.02.019

    Article  Google Scholar 

  11. Eglington SM, Pearce-Higgins JW (2012) Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. Plos One 7(3):e30407. doi:10.1371/journal.pone.0030407

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  12. Esseen P-A, Ehnström B, Ericson L, Sjöberg K (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  13. European Bird Census Council E (2015) Trends of common birds in Europe, 2015 update. http://www.ebcc.info/index.php?ID=587. Cited Sep 26, 2015

  14. European Union (2015) Bird Directive article 12 reporting. Willow Tit: http://bd.eionet.europa.eu/article12/summary?period=1&subject=A238. Cited 26 September, 2015

  15. Felton A, Lindbladh M, Elmberg J, Felton AM, Andersson E, Sekercioglu CH, Collingham Y, Huntley B (2014) Projecting impacts of anthropogenic climatic change on the bird communities of southern Swedish spruce monocultures: will the species poor get poorer? Ornis Fenn 91:1–13

    Google Scholar 

  16. Fraixedas S, Lehikoinen A, Lindén A (2015a) Impacts of climate and land-use change on wintering bird populations in Finland. J Avian Biol 46:63–72. doi:10.1111/jav.00441

    Article  Google Scholar 

  17. Fraixedas S, Lindén A, Lehikoinen A (2015b) Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn 92:187–203

    Google Scholar 

  18. Gregory RD, Vořišek P, Van Strien A, Meyling AWG, Jiguet F, Fornasari L, Reif J, Chylarecki P, Burfield IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 149:78–97. doi:10.1111/j.1474-919X.2007.00698.x

    Article  Google Scholar 

  19. Hagemeijer WJM, Blair MJ (eds) (1997) The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. T & A D Poyser, London

    Google Scholar 

  20. Hanski IK, Haila Y (1988) Singing territories and home ranges of breeding chaffinches: visual observation vs radio-tracking. Ornis Fenn 65:97–103

    Google Scholar 

  21. Hautala H, Jalonen J, Laaka-Lindberg S, Vanha-Majamaa I (2004) Impacts of retention felling on coarse woody debris (CWD) in mature boreal spruce forests in Finland. Biodivers Conserv 13:1541–1554. doi:10.1023/B:BIOC.0000021327.43783.a9

    Article  Google Scholar 

  22. Helle P (1985) Habitat selection of breeding birds in relation to forest succession in Northeastern Finland. Ornis Fenn 62:113–123

    Google Scholar 

  23. Helle P, Järvinen O (1986) Population trends of North Finnish land birds in relation to their habitat selection and changes in forest structure. Oikos 46:107–115

    Article  Google Scholar 

  24. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455. doi:10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  25. Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG (2015) The drivers of avian abundance. patterns in the realtive importance of climate and land use. Glob Ecol Biogeogr 24:1249–1260. doi:10.1111/geb.12377

    Article  Google Scholar 

  26. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durham University, The RSPB and Lynx Edicions, Barcelona

  27. Inger R, Gregory R, Duffy JP, Stott I, Vořišek Petr, Gaston KJ (2015) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36. doi:10.1111/ele.12387

    PubMed  Article  Google Scholar 

  28. Järvinen O, Väisänen RA (1976) Finnish line transect censuses. Ornis Fenn 53:115–118

    Google Scholar 

  29. Järvinen O, Väisänen RA (1983) Correction coefficients for line transect censuses of breeding birds. Ornis Fenn 60:97–104

    Google Scholar 

  30. Järvinen O, Koskimies P, Väisänen RA (1991) Line transect census of breeding land birds. In: Koskimies P, Väisänen RA (eds) Monitoring bird populations: a manual of methods applied in Finland. Zoological Museum, Finnish Museum of Natural History, University of Helsinki, Helsinki, pp 33–40

  31. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. Plos Biol 5:1211–1219. doi:10.1371/journal.pbio.0050157

    CAS  Article  Google Scholar 

  32. Jiguet F, Gregory RD, Devictor V, Green RE, Vořišek P, Van Strien A, Couvet D (2010) Population trends of European common birds are predicted by characteristics of their climatic niche. Glob Change Biol 16:497–505. doi:10.1111/j.1365-2486.2009.01963.x

    Article  Google Scholar 

  33. Jiguet F, Barbet-Massin M, Devictor V, Jonzen N, Lindström Å (2013) Current population trends mirror forecasted changes in climatic suitability for Swedish breeding birds. Bird Study 60:60–66. doi:10.1080/00063657.2012.733337

    Article  Google Scholar 

  34. Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701. doi:10.1016/j.tree.2009.06.007

    PubMed  Article  Google Scholar 

  35. Kuuluvainen T, Tahvonen O, Aakala T (2012) Even-aged and uneven-aged forest management in boreal fennoscandia: a review. Ambio 41:720–737. doi:10.1007/s13280-012-0289-y

    PubMed  PubMed Central  Article  Google Scholar 

  36. Laaksonen T, Lehikoinen A (2013) Population trends in boreal birds: continuing declines in agricultural, northern, and long-distance migrant species. Biol Conserv 168:99–107. doi:10.1016/j.biocon.2013.09.007

    Article  Google Scholar 

  37. Lehikoinen A, Virkkala R (2015) North by northwest: climate change and directions of density shifts in birds. Glob Change Biol. doi:10.1111/gcb.13150

    Google Scholar 

  38. Lindström Å, Green M, Paulson G, Smith HG, Devictor V (2013) Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36:313–322. doi:10.1111/j.1600-0587.2012.07799.x

    Article  Google Scholar 

  39. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. doi:10.1038/nature08649

    PubMed  CAS  Article  Google Scholar 

  40. Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42. doi:10.1111/j.1466-822x.2006.00262.x

    Article  Google Scholar 

  41. Metinfo (2012) Valtakunnan metsien inventointi. Metsävarat metsäkeskuksittain—inventointien VMI9–VMI11 tuloksia. Metla. (http://www.metla.fi/metinfo/vmi/index.htm)

  42. Muukkonen P, Angervuori A, Virtanen T, Kuparinen A, Merilä J (2012) Loss and fragmentation of Siberian jay (Perisoreus infaustus) habitats. Boreal Environ Res 17:59–71

    Google Scholar 

  43. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039. doi:10.1111/j.1365-2699.2006.01572.x

    Article  Google Scholar 

  44. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev-Clim Change 5:317–335. doi:10.1002/wcc.271

    Article  Google Scholar 

  45. Ordonez A, Martinuzzi S, Radelo VC, Williams JW (2014) Combined speeds of climate and land-use change of the conterminous US until 2050. Nat Clim Change 4:811–816. doi:10.1038/nclimate2337

    Article  Google Scholar 

  46. Pannekoek J, van Strien A (2005) TRIM 3 manual (trends & indices for monitoring data). Statistics Netherlands, Voorburg

    Google Scholar 

  47. Rabinowitsch-Jokinen R, Vanha-Majamaa I (2010) Immediate effects of logging, mounding and removal of logging residues and stumps on coarse woody debris in managed boreal norway spruce stands. Silva Fenn 44:51–62. doi:10.14214/sf.162

    Article  Google Scholar 

  48. Räsänen A, Kuitunen M, Hjort J, Vaso A, Kuitunen T, Lensu A (2016) The role of landscape, topography, and geodiversity in explaining vascular plant species richness in a fragmented landscape. Boreal Environ Res 21, In press

  49. Roberge J-M, Angelstam P, Villard M-A (2008) Specialised woodpeckers and naturalness in hemiboreal forests—deriving quantitative targets for conservation planning. Biol Conserv 141:997–1012. doi:10.1016/j.biocon.2008.01.010

    Article  Google Scholar 

  50. Root T (1988) Energy constraints on avian distributions and abundances. Ecology 69:330–339

    Article  Google Scholar 

  51. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    PubMed  CAS  Article  Google Scholar 

  52. Salminen S, Salminen O (1998) Forest resources in Middle Finland, 1988–92, and in South Finland, 1986–92 (In Finnish with an English summary). Metsäntutkimuslaitoksen Tiedonantoja 710:1–137

    Google Scholar 

  53. Siffczyk C, Brotons L, Kangas K, Orell M (2003) Home range size of willow tits: a response to winter habitat loss. Oecologia 136:635–642. doi:10.1007/s00442-003-1256-x

    PubMed  Article  Google Scholar 

  54. Solonen T (1996) Patterns and variations in the structure of forest bird communities in southern Finland. Ornis Fenn 73:12–26

    Google Scholar 

  55. Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Article  Google Scholar 

  56. Tiainen J, Martin J-L, Pakkala T, Piiroinen J, Solonen T, Vickholm M, Virolainen E (1980) Efficiency of the line transect and point count methods in a south Finnish forest area. In: Proceedings of the VI International Conference on Bird Census Work, Göttingen

  57. Tiainen J, Vickholm M, Pakkala T, Piiroinen J, Virolainen E (1983) The habitat and spatial relations of breeding Phylloscopus warblers and the goldcreast Regulus regulus in southern Finland. Ann Zool Fenn 20:1–12

    Google Scholar 

  58. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256. doi:10.1002/joc.2046

    Article  Google Scholar 

  59. Tomppo E, Katila M, Moilanen J, Mäkelä H, Peräsaari J (1998) Kunnittaiset metsävarat, 1990-1994. Metsätieteen Aikak—Folia For 4B(1998):619–839

    Google Scholar 

  60. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond Ser B-Biol Sci 270:467–473. doi:10.1098/rspb.2002.2246

    CAS  Article  Google Scholar 

  61. Väisänen RA (2008) Changes in frequency and abundance of 63 bird species at winter feeding sites in Finland during 19 winters 1988/1989–2006/2007 (In Finnish with English summary). Linnut-vuosikirja 2007:60–79

    Google Scholar 

  62. Väisänen RA, Lammi E, Koskimies P (1998) Distribution, numbers and population changes of Finnish breeding birds (In Finnish with an English summary). Otava, Helsinki

    Google Scholar 

  63. Valkama J, Saurola P, Lehikoinen A, Lehikoinen E, Piha M, Sola P, Velmala W (2014) The Finnish bird ringing atlas, vol. II. Finnish Museum of Natural History and Ministry of Environment, Helsinki

  64. Vanha-Majamaa I, Jalonen J (2001) Green tree retention in Fennoscandian forestry. Scand J For Res Suppl 3:79–90

    Article  Google Scholar 

  65. Vihervaara P, Mononen L, Auvinen A-P, Virkkala R, Lü Y, Pippuri I, Packalen P, Valbuena R, Valkama J (2015) How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landsc Ecol 30:501–516. doi:10.1007/s10980-014-0137-5

    Article  Google Scholar 

  66. Virkkala R (1987) Effects of forest management on birds breeding in northern Finland. Ann Zool Fenn 24:281–294

    Google Scholar 

  67. Virkkala R (1991) Spatial and temporal variation in bird communities and populations in north-boreal coniferous forests: a multiscale approach. Oikos 62:59–66. doi:10.2307/3545446

    Article  Google Scholar 

  68. Virkkala R (2004) Bird species dynamics in a managed southern boreal forest in Finland. For Ecol Manag 195:151–163. doi:10.1016/j.foreco.2004.02.037

    Article  Google Scholar 

  69. Virkkala R, Lehikoinen A (2014) Patterns of climate-induced density shifts of species: poleward shifs faster in northern boreal birds than in southern birds. Glob Change Biol 20:2995–3003. doi:10.1111/gcb.12573

    Article  Google Scholar 

  70. Virkkala R, Rajasärkkä A (2011a) Climate change affects populations of northern birds in boreal protected areas. Biol Lett 7:395–398. doi:10.1098/rsbl2010.1052

    PubMed  PubMed Central  Article  Google Scholar 

  71. Virkkala R, Rajasärkkä A (2011b) Northward density shift of bird species in boreal protected areas due to climate change. Boreal Environ Res 16(B):2–13

    Google Scholar 

  72. Virkkala R, Rajasärkkä A (2012) Preserving species populations in the boreal zone in a changing climate: contrasting trends of bird species groups in a protected area network. Nat Conserv 3:1–20. doi:10.3897/natureconservation.3.3635

    Article  Google Scholar 

  73. Virkkala R, Pöyry J, Heikkinen RK, Lehikoinen A, Valkama J (2014) Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecol Evol 4:2991–3003. doi:10.1002/ece3.1162

    PubMed  PubMed Central  Article  Google Scholar 

  74. Wittwer T, O’Hara RB, Caplat P, Hickler T, Smith HG (2015) Long-term population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos 124:1151–1159. doi:10.1111/oik.01559

    Article  Google Scholar 

Download references

Acknowledgments

Ari Rajasärkkä is greatly acknowledged, as he provided the bird census data of the protected areas. Ari-Pekka Auvinen read and commented the earlier version of the manuscript. The comments of two anonymous reviewers considerably improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raimo Virkkala.

Additional information

Communicated by Matts Lindbladh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Virkkala, R. Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change?. Biodivers Conserv 25, 151–167 (2016). https://doi.org/10.1007/s10531-015-1043-0

Download citation

Keywords

  • Boreal
  • Climate change
  • Decline
  • Forest bird
  • Forestry