Will forest conservation areas protect functionally important diversity of fungi and lichens over time?

Abstract

Incorporating functional values in biodiversity monitoring systems could add novel perspectives of the status of biodiversity in conservation areas. Stable frequencies of large foliose nitrogen-fixing cyanolichens likely have positive effects on the nitrogen budget of forests and provide food, material and shelter for invertebrates, gastropods and birds. Stable volumes of deadwood and frequencies of associated fungi provide an important supporting function for ecosystem services such as nutrient cycling, carbon storage and soil formation. Based on regional monitoring data from boreal old-growth forest nature reserves and key habitats, we tested for changes in the frequency of various functionally important substrates and species over time. We detected significant reductions in the frequency of indicator cyanolichens occurring on deciduous trees already after 10 years in key habitats, despite non-significant changes in their host substrates. Frequencies of indicator pendulous lichens Alectoria sarmentosa and Bryoria nadvornikiana had also decreased in key habitats, despite overall stable volumes of large conifer host trees. Lichen reductions were more pronounced in the smaller key habitats compared to the larger formally protected nature reserves, likely due to degrading fragmentation and isolation effects. In contrast to these lichens, the average frequencies of old-growth forest indicator fungi decaying coniferous deadwood and common fungi on deciduous trees (Fomes fomentarius) and coniferous trees (Fomitopsis pinicola) remained unchanged. The studied cyanolichens and fruiting fungi generally had similar extinction rates over 10 years, whilst only cyanolichens had substantially lower colonization rates. Amid a severely fragmented landscape, conservation areas seem to struggle in preserving some of the basic old-growth forest values.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Akçakaya HR, Sjögren-Gulve P (2000) Population viability analysis in conservation planning: an overview. Ecol Bull 48:9–21

    Google Scholar 

  2. Antoine ME (2004) An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregano. Bryologist 107:82–87

    Article  Google Scholar 

  3. Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1–12

    Google Scholar 

  4. Artdatabanken (2015) Rödlistade arter i Sverige 2015. Artdatabanken SLU, Uppsala

    Google Scholar 

  5. Asplund J, Larsson P, Vatne S et al (2010) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. J Ecol 98:218–225

    Article  Google Scholar 

  6. Aune K, Jonsson BG, Moen J (2005) Isolation and edge effects among woodland key habitats in Sweden: is forest policy promoting fragmentation? Biol Conserv 124:89–95

    Article  Google Scholar 

  7. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for forest biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  8. Berglund H, Jonsson BG (2005) Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv Biol 19:338–348

    Article  Google Scholar 

  9. Brooks TM, Bakarr MI, Boucher T et al (2004) Coverage provided by the global protected-area system: is it enough? Bioscience 54:1081–1091

    Article  Google Scholar 

  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag, New York

    Google Scholar 

  11. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    CAS  Article  PubMed  Google Scholar 

  12. Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  13. Chan KMA, Shaw MR, Cameron DR et al (2006) Conservation planning for ecosystem services. PLoS Biol 4:2138–2152

    CAS  Google Scholar 

  14. Dahlberg A, Genney DR, Heilmann-Clausen J (2010) Developing a comprehensive strategy for fungal conservation in Europe: current status and future needs. Fungal Ecol 3:50–64

    Article  Google Scholar 

  15. De Bello F, Lavorel S, Díaz S et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  16. Diaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  17. Edman M, Jönsson M, Jonsson BG (2007) Small-scale fungal- and wind-mediated disturbances strongly influence the temporal availability of logs in an old-growth Picea abies forest. Ecol Appl 170:482–490

    Article  Google Scholar 

  18. Egoh B, Rouget M, Reyers B, Knight AT, Cowling RM et al (2007) Integrating ecosystem services into conservation assessments: a review. Ecol Econ 63:714–721

    Article  Google Scholar 

  19. Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol 14:131–152

    Article  Google Scholar 

  20. Ellis CJ, Coppins BJ (2007) Changing climate and historic-woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. J Veg Sci 18:725–734

    Article  Google Scholar 

  21. Esseen PA, Renhorn KE (1998) Mass loss of epiphytic lichen litter in a boreal forest. Ann Bot Fenn 35:211–217

    Google Scholar 

  22. Esseen PA, Renhorn KE, Petersson RB (1996) Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecol Appl 6:228–238

    Article  Google Scholar 

  23. Essen PA (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. J Veg Sci 17:185–194

    Google Scholar 

  24. Fedrowitz K, Kuusinen M, Snäll T (2012) Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. J Appl Ecol 49:493–502

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gärdenfors U (2010) The 2010 red list of Swedish species. Swedish Species Information Centre in Cooperation with Swedish Environmental Protection Agency, Uppsala

    Google Scholar 

  27. Gauslaa Y, Palmqvist K, Solhaug KA et al (2007) Growth of epiphytic old forest lichens at regional and successional scales. Can J For Res 37:1832–1845

    Article  Google Scholar 

  28. Geldmann J, Barnes M, Coad L et al (2013) Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol Conserv 161:230–238

    Article  Google Scholar 

  29. Gunnarsson B, Hake M, Hultengren S (2004) A functional relationship between species richness of spiders and lichens in spruce. Biodivers Conserv 13:685–693

    Article  Google Scholar 

  30. Halme P, Mönkkönen M, Kotiaho JS et al (2009) Quantifying the indicator power of an indicator species. Conserv Biol 23:1008–1016

    Article  PubMed  Google Scholar 

  31. Hansen K, Malmaeus M, Lindblad M (2014) Ekosystemtjänster i svenska skogar. IVL Rapport B2190

  32. Hedwall P-O, Mikusiński G (2015) Structural changes in protected forests in Sweden: implications for conservation functionality. Can J For Res 45:1–10

    Article  Google Scholar 

  33. Heilmann-Clausen J, Barron ES, Boddy L et al (2015) A fungal perspective on conservation biology. Conserv Biol 29:61–68

    Article  PubMed  Google Scholar 

  34. Jacobs JM, Work TT (2012) Linking deadwood-associated beetles and fungi with wood decomposition rates in managed black spruce forests. Can J For Res 42:1477–1490

    Article  Google Scholar 

  35. Janisch JE, Harmon ME (2002) Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol 22:77–89

    CAS  Article  PubMed  Google Scholar 

  36. Jenkins CN, Joppa L (2009) Expansion of the global terrestrial protected area system. Biol Conserv 142:2166–2174

    Article  Google Scholar 

  37. Jönsson MT, Fraver S, Jonsson BG (2009) Forest history and the development of old-growth characteristics in fragmented boreal forests. J Veg Sci 20:91–106

    Article  Google Scholar 

  38. Junninen K, Komonen A (2011) Conservation ecology of boreal polypores: a review. Biol Conserv 144:11–20

    Article  Google Scholar 

  39. Jüriado I, Liira J, Paal J et al (2009) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers Conserv 18:105–125

    Article  Google Scholar 

  40. Kivinen S, Moen J, Berg A et al (2010) Effects of modern forest management on winter grazing resources for reindeer in Sweden. Ambio 39:269–278

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kouki J, Arnold K, Martikainen P (2004) Long-term persistence of aspen—a key host for many threatened species—is endangered in old-growth conservation areas in Finland. J Nat Conserv 12:41–52

    Article  Google Scholar 

  42. Kuusinen M (1994) Epiphytic lichen diversity on Salix caprea in old-growth southern and middle boreal forests of Finland. Ann Bot Fenn 31:77–92

    Google Scholar 

  43. Larsson P, Gauslaa Y (2011) Rapid juvenile development in old forest lichens. Botany 89:65–72

    Article  Google Scholar 

  44. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  45. Lie MH, Arup U, Grytnes JA et al (2009) The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal forests. Biodivers Conserv 18:3579–3596

    Article  Google Scholar 

  46. Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305–1306

    CAS  Article  PubMed  Google Scholar 

  47. Lindenmayer DB, Laurance WF, Franklin JF et al (2014) New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv Lett 7:61–69

    Article  Google Scholar 

  48. Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182

    Article  Google Scholar 

  49. Marmor L, Tõrra T, Saag L et al (2012) Species richness of epiphytic lichens in coniferous forests: the effect of canopy openness. Ann Bot Fenn 49:352–358

    Article  Google Scholar 

  50. McCarthy J (2001) Gap dynamics of forest trees: a review with particular attention to boreal forests. Environ Rev 9:1–59

    Article  Google Scholar 

  51. McCune B, Rosentreter R, Ponzetti JM et al (2000) Epiphyte habitats in an old conifer forest in western Washington, U.S.A. Bryologist 103:417–427

    Article  Google Scholar 

  52. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. In: Reid WV (ed). Island Press, Washington, DC

  53. Moning C, Werth S, Dziock F et al (2009) Lichen diversity in temperate montane forests is influenced by forest structure more than climate. For Ecol Manag 258:745–751

    Article  Google Scholar 

  54. Nitare J (2000) Indicator species for assessing the nature conservation value of woodland sites—a flora of selected cryptogams. Skogsstyrelsen, Jönköping (In Swedish with English summary)

    Google Scholar 

  55. Nitare J (2011) Barrskogar - Nyckelbiotoper i Sverige. Skogsstyrelsen, Jönköping (In Swedish)

    Google Scholar 

  56. Nordén B, Paltto H, Claesson C et al (2012) Partial cutting can enhance epiphyte conservation in temperate oak-rich forests. For Ecol Manag 270:35–44

    Article  Google Scholar 

  57. Nordén J, Penttilä R, Siitonen J et al (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101:701–712

    Article  Google Scholar 

  58. Norén M, Hultgren B, Nitare J et al (1995) Instruktion för datainsamling vid inventering av nyckelbiotoper. Skogsstyrelsen, Jönköping (In Swedish)

    Google Scholar 

  59. Öckinger E, Nilsson SG (2010) Local population extinction and vitality of an epiphytic lichen in old-growth forest fragments. Ecology 91:2100–2109

    Article  PubMed  Google Scholar 

  60. Ottosson E, Nordén J, Dahlberg A et al (2014) Species associations during the succession of wood-inhabiting fungal communities. Fungal Ecol 11:17–28

    Article  Google Scholar 

  61. Perhans K, Gustafsson L, Jonsson F et al (2007) Bryophytes and lichens in different types of forest set-asides in boreal Sweden. For Ecol Manag 242:374–390

    Article  Google Scholar 

  62. Pettersson RB, Ball JP, Renhorn KE et al (1995) Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biol Conserv 74:57–63

    Article  Google Scholar 

  63. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  64. Roberge JM, Bengtsson SBK, Wulff S et al (2011) Edge creation and tree dieback influence the patch-tracking metapopulation dynamics of a red-listed epiphytic bryophyte. J Ecol 48:650–658

    Google Scholar 

  65. Rodrigues ASL (2006) Are global conservation efforts successful? Science 313:1051–1052

    Article  PubMed  Google Scholar 

  66. Rudolphi J, Jönsson MT, Gustafsson L (2014) Biological legacies buffer local species extinction after logging. J Appl Ecol 51:53–62

    Article  PubMed  Google Scholar 

  67. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  68. Sillett SC, Antoine ME (2004) Lichens and bryophytes in forest canopies. In: Lowman MD, Rinker HB (eds) Forest canopies, 2nd edn. Academic Press, San Diego, pp 151–174

    Google Scholar 

  69. Sillett SC, McCune B, Peck JE et al (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799

    Article  Google Scholar 

  70. Smalian L (1837) Beitrag zur Holzmesskunst. Stralsund, Germany

    Google Scholar 

  71. Snäll T, Jonsson BG (2001) Edge effects on six polyporous fungi used as old-growth indicatorsin Swedish boreal forest. Ecol Bull 49:255–262

    Google Scholar 

  72. Snäll T, Ehrlén J, Rydin H (2005) Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109:209–222

    Article  Google Scholar 

  73. Söderberg U (1992) Funktioner för skogsindelning. Höjd, formhöjd och barktjocklek för enskilda träd. Rapport nr. 52. Institutionen för skogstaxering. Sveriges Lantbruksuniversitet. (In Swedish)

  74. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Google Scholar 

  75. Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopedia of biodiversity, 3rd edn. Academic Press, San Diego, pp 109–120

    Google Scholar 

  76. Tilman D, May RM, Lehman CL et al (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  77. Timonen J, Siitonen J, Gustafsson L et al (2010) Woodland key habitats in northern Europe: concepts, inventory and protection. Scand J For Res 25:309–324

    Article  Google Scholar 

  78. Timonen J, Gustafsson L, Kotiaho JS et al (2011) Hotspots in cold climate: conservation value of woodland key habitats in boreal forests. Biol Conserv 144:2061–2067

    Article  Google Scholar 

  79. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  80. Wardle DA, Jonsson M (2010) Biodiversity effects in real ecosystems—a response to Duffy. Front Ecol Environ 8:10–11

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to all that have participated in the field work: Annika Forsslund, Stefan Henriksson, Anders Johansson, Fredrik Jonsson, Sebastian Kirppu, Ulrika Nordin, Elin Hultman and Ville Pokela. We are grateful to Bengt-Gunnar Jonsson, Anders Dahlberg, Håkan Berglund, Panu Halme, and one anonymous reviewer whose comments helped us improve the manuscript. The study was funded by the Swedish Forest Society (Skogssällskapet), the Swedish Environmental Protection Agency (Naturvårdsverket), and the Faculty of Natural Resources and Agricultural Sciences, SLU.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mari T. Jönsson.

Additional information

This is part of the special issue on ‘Forest biodiversity and ecosystem services’.

Communicated by Eckehard Brockerhoff, Hervé Jactel and Ian Thompson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jönsson, M.T., Ruete, A., Kellner, O. et al. Will forest conservation areas protect functionally important diversity of fungi and lichens over time?. Biodivers Conserv 26, 2547–2567 (2017). https://doi.org/10.1007/s10531-015-1035-0

Download citation

Keywords

  • Biomonitoring
  • Cryptogams
  • Ecosystem function
  • Functional groups
  • Indicator species
  • Protected areas