Skip to main content

Advertisement

Log in

Myrtaceae in the Atlantic forest: their role as a ‘model’ group

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Myrtaceae is one of the richest families in the Atlantic Forest, a priority biodiversity hotspot that continues to be highly threatened, subject to rapid urbanisation and high levels of resource exploitation. Authors have suggested that individual lineages can be used as models to study biome evolution and ecology and to provide data for conservation planning in these areas. Here we review how Myrtaceae fit the ‘model’ criteria and examine the family’s distribution throughout the Brazilian Atlantic Forest answering the questions: What is the ecological representation of Myrtaceae in the Atlantic Forest?; What is the current taxonomic situation of Myrtaceae in the biome?; What is the current phylogenetic understanding in the family?; Does the historical timeframe of the lineage coincide with that of the biome?; Can Myrtaceae be used to discuss species diversity hotspots within the Atlantic forests?; What is the role of Myrtaceae in conservation strategy? And finally, Can Myrtaceae be used as a ‘model’ taxon? The concept of the ‘model taxon’ is also discussed. The review concludes that taxonomic and phlyogenetic understanding in Myrtaceae are rapidly increasing, giving hope that taxonomic stability, easy species identification and management are realistic in a way unthinkable only a few decades ago. Myrtaceae function well as a ‘model’ within the Atlantic forest but fit some criteria better than others. Taxa can qualify as ‘models’ representing different times and pressures in the history of a given biome; each tells its own story. For future ‘model’ group studies to have maximum impact and implementation for evolutionary studies and conservation strategy, synthetic studies of multiple ‘model’ groups using multiple approaches are required; only then can a predictive understanding of past and future processes in the biomes concerned, be glimpsed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida FFM and Carneiro CDR (1998) Origem e evolução da Serra do Mar. Rev Bras Geoc 28(2):135–150

    Google Scholar 

  • Biffin E, Lucas EJ, Craven LA, Costa IR, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Ann Bot 106:79–93

  • Burnham RJ, Graham A (1999) The history of Neotropical vegetation: new DEVELOPMENTS and status. Ann Mo Bot Gard 86(2):546–589

    Article  Google Scholar 

  • Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004) Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol Cons 120:517–524

    Article  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patters of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Conservation International (2015) http://www.conservation.org/How/Pages/Hotspots.aspx. Accessed Feb 2015

  • Costa IR (2009) Estudos evolutivos em Myrtaceae: aspectos citotaxonômicos e filogenéticos em Myrteae, enfatizando Psidium e generos relacionados. PhD thesis. Universidade Estadual de Campinas, Campinas

  • Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Critical Ecosystems Partnership Fund (2014) http://www.cepf.net/Pages/default.aspx. Accessed 12 Jan 2014

  • Daly DCDB, Fine PVA, Martínez-Habibe MC (2012) Burseraceae: a model for studying the Amazon flora. Rodriguésia 63:21–30

    Article  Google Scholar 

  • De Carvalho, PS (2013) Ecologia e relações filogenéticas de Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae). PhD Thesis. Universidade de Brasília

  • Dick CW, Heuertz M (2008) The complex biogeographic history of a widespread tropical tree species. Evolution 62:2760–2774

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond JA, Franco JLDA, Oliveira D (2010). Uma análise sobre a história e a situação das unidades de conservação no Brasil. Conservação da biodiversidade: legislação e políticas públicas. Câmara dos Deputados, Edições Câmara, Brasília, pp. 341–385

  • Duarte LDS, Bergamin RS, Marcilio-Silva V, Seger GDDS, Marques MCM (2014) Phylobetadiversity among forest types in the Brazilian Atlantic forest complex. PLoS One 9:e105043

    Article  PubMed Central  Google Scholar 

  • Faria-Júnior JQF (2014) Revisão Taxonômica e filogenia de Eugenia Sect. Pilothecium (Kiaerskou) D. Legrand (Myrtaceae). PhD Thesis. Universidade de Brasília

  • Fonseca GAB, Herrmann G, Leite YLR (1999) Macrogeography of Brazilian mammals. In: Eisenberg JF, Redford KH (eds) Mammals of the Neotropics: the central Neotropics 3. University of Chicago Press, Chicago, pp 549–563

    Google Scholar 

  • Forzza RC, Stehmann JR, Nadruz M, Costa A, de Carvalho AA Jr, Walter BMT, Bicudo C, Moura CWN, Zappi D, Peralta DF, Pinheiro da Costa D, de Barros F, Martinelli G, de Lima HC, Prado J, Baumgratz JFA, Pirani JR, da Silva Sylvestre L, Maia LC, Lohmann LG, Paganucci L, Costa A, da Silva Alves MV, Mamede MCH, de Lourdes Soares M, Morim MP, Barbosa MR, Menezes M, Evangelista PHL, Viana PL, Goldenberg R, Secco R, Rodrigues RS, Cavalcanti T, Mansano V, de Castro Souza V (2010) Introdução. Lista de espécies da flora do Brasil, Rio de Janeiro Bot Garden

    Google Scholar 

  • Forzza RC, Baumgratz JFA, Bicudo CEM, Canhos DAL, Carvalho AA Jr, Nadruz Coelho MA, Costa AF, Costa DP, Hopkins MG, Leitman PM, Lohmann LG, Lughadha EN, Maia LC, Martinelli G, Menezes M, Morim MP, Peixoto AL, Pirani JR, Prado J, Queiroz LP, Souza S, Souza VC, Stehmann JR, Sylvestre LS, Walter BMT, Zappi DC (2012) New Brazilian floristic list highlights conservation challenges. Bioscience 62:39–45

    Article  Google Scholar 

  • Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. In Plant Diversity and Complexity Patterns: Local, Regional, and Global Dimensions: Copenhagen, Denmark. Biol Skr 55:343–374

    Google Scholar 

  • Gressler E, Pizo MA, Morellato PC (2006) Polinização e dispersão de sementes em Myrtaceae do Brasil. Rev Brasil Bot 29:509–530

    Article  Google Scholar 

  • Grifo FT (1992) A revision of Myrcianthes Berg (Myrtaceae). Ph. D. Thesis. Cornell University

  • Harris GM, Jenkins CN, Pimm SL (2005) Redefining biodiversity conservation priorities. Conserv Biol 19:1957–1967

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Jarvis A, O’Brien R, Mathur P, Bussink C, Cruz M, Barrantes I and Rojas E (2005) DIVA-GIS version 5.2. Biodiversity International, Rome

  • INPE/IBAMA (1990) Atlas dos remanescentes florestais do Domínio da Mata Atlântica. São Paulo

  • IPNI (2015) The international plant names index. www.ipni.org/index.html. Accessed 10 Feb 2015

  • IUCN and UNEP-WCMC (2015) The World Database on Protected Areas (WDPA) [On-line]. Cambridge, UK: UNEP- WCMC. www.protectedplanet.net. Accessed 12 Feb 2015

  • Landrum LR (1981) A monograph of the genus Myrceugenia(Myrtaceae). Fl Neotrop Monogr 29:1–137

    Google Scholar 

  • Landrum LR (1986) Campomanesia, Pimenta, Blepharocalix, Legrandia, Acca, Myrrhinium and Luma. Fl Neotrop Monogr 45:1–178

    Google Scholar 

  • Landrum LR (2010) A revision of Calycolpus. Syst Bot 35(2):368–389

    Article  Google Scholar 

  • Landrum LR, Kawasaki ML (1997) The genera of Myrtaceae in Brazil: an illustrated synoptic treatement and identification keys. Brittonia 49(4):508–536

    Article  Google Scholar 

  • Lucas EJ, Harris SA, Mazine FF, Bellsham SR, Lughadha EMN, Telford A, Gasson PE, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56:1105–1128

    Article  Google Scholar 

  • Lucas EJ, Matsumoto K, Harris SA, Lughadha EMN, Benardini B, Chase MW (2011) Phylogenetics, morphology, and evolution of the large genus Myrcia s.l. (Myrtaceae). Int J Plant Sci 172:915–934

    Article  Google Scholar 

  • Mazine FF (2006) Estudos taxonômicos em Eugenia L. (Myrtaceae), com ênfase em Eugenia sect. Racemosae O. Berg. PhD Thesis. Universidade de São Paulo

  • Mazine FF, Souza VC, Sobral M, Forest F, Lucas E (2014) A preliminary phylogenetic analysis of Eugenia (Myrtaceae: myrteae), with a focus on Neotropical species. Kew Bull 69:9497

    Article  Google Scholar 

  • Mittermeier RA, Gil RP, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2005). Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. University of Chicago press, Boston

  • Mori SA, Boom BM, de Carvalino AM, dos Santos TS (1983) Ecological importance of Myrtaceae in an eastern Brazilian wet forest. Biotropica 15:68–70

    Article  Google Scholar 

  • Morrone JJ (2013) Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30:202–214

    Article  Google Scholar 

  • Murillo-A J, Ruiz-P E, Landrum LR, Stuessy TF, Barfuss MHJ (2012) Phylogenetic relationships in Myrceugenia (Myrtaceae) based on plastid and nuclear DNA sequences. Mol Phyl Evol 62:764–776

    Article  Google Scholar 

  • Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23:151–163

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Filho AT (2015) NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal de Minas Gerais. Available at http://www.icb.ufmg.br/treeatlan/. Accessed 16 Feb 2015

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in SE Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environ 66:498–532

    Article  Google Scholar 

  • PACTO pela Restauração da Mata Atlântica (2014) www.pactomataatlantica.org.br. Accessed 24 Dec 2014

  • Palazzesi L, Barreda V (2007) Major vegetation trends in the Tertiary of Patagonia (Argentina): a qualitative paleoclimatic approach based on palynological evidence. Flora 202:328–337

    Article  Google Scholar 

  • Pearman PB, Weber D (2007) Common species determine richness patterns in biodiversity indicator taxa. Biol Cons 138:109–119

    Article  Google Scholar 

  • Pennington RT, Dick CW (2004) The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans R Soc Lond Ser B 359:1611–1622

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–256

    Article  Google Scholar 

  • Pigg KB, Stockey RA, Maxwell SL (1993) Paleomyrtinaea, a new genus of per-mineralized myrtaceous fruits and seeds from the Eocene of British Columbia and Paleocene of North Dakota. Can J Bot 71:1–9

  • Pizo MA (2002) The seed dispersers and fruit syndromes of Myrtaceae in Brazilian Atlantic forest. In: Levey DJ, Silva WR, Galetti M (eds) Frugivores and seed dispersers biodiversity and conservation perspectives. CABI Publishing, Wallingford, pp 129–143

    Google Scholar 

  • Proença CEB (1990) A revision of Siphoneugena Berg. Edin J Bot 47:239–271

    Article  Google Scholar 

  • Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242–2245

    Article  CAS  PubMed  Google Scholar 

  • Ricketts TH, Dinerstein E, Olson DM, Loucks C (1999) Who’s where in North America? Patterns of species richness and the utility of indicator taxa for conservation. Bioscience 49:369–381

    Article  Google Scholar 

  • Rigueira DMG, Coutinho SL, Pinto–Leite CM, Samo VLC, Estavillo C, Campos S, Dias VS, Chastinet CB (2013) Perda de habitat, leis ambientais e conhecimento científico: proposta de critérios para a avaliação dos pedidos de supressão de vegetação. Revista Caititu 1(1):21–42

  • Ronquist F (1997) Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst Biol 46:195–203

    Article  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    Article  CAS  PubMed  Google Scholar 

  • Santos MF (2014) Biogeografia de Myrcia s.l., taxonomia e filogenia do clado Sympodiomyrcia (Myrtaceae). PhD thesis. Universidade de São Paulo, São Paulo

  • Sobral M (1993) Sinopse de Myrciaria (Myrtaceae). Napaea 9:13–41

    Google Scholar 

  • Sobral M (2003) A família Myrtaceae no Rio Grande do Sul. UNISINOS, São Leopoldo

    Google Scholar 

  • Sobral M, Proença C, Costa Souza M, Mazine-Capelo F, Lucas EJ (2015) Myrtaceae in Catálogo de Plantas e Fungos do Brazil, v. 2 In: Forzza, R. C. et al. (eds). Jardim Botânico do Rio de Janeiro

  • Souza MC (2009) Estudos taxônomicos em Myrtaceae no Brasil: Revisão de Neomitranthes Kausel ex D.Legrand e contribuição ao conhecimento da diversidade e conservação de Plinia L.(Myrtaceae Juss.) no Dominío Atlântico. Ph.D. Thesis. Jardim Botânico do Rio de Janeiro. Rio de Janeiro, Rio de Janeiro

  • Staggemeier VG, Diniz-Filho JAF, Morellato LPC (2010) The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). J Ecol 98:1409–1421

    Article  Google Scholar 

  • Staggemeier V, Diniz-Filho J, Forest F, Lucas EJ (2015) Phylogenetic analysis in Myrcia sect. Aulomyrcia (O.Berg) Griseb. and inferences on plant diversity in the Atlantic Rainforest. Ann Bot 15:747–761

    Article  Google Scholar 

  • Stehmann J, Forzza RC, Sobral M, Kamino LHY (2009) Plantas da Floreta Atlântica. Jardim Botânico do Rio de Janeiro Press, Rio de Janeiro

  • Sytsma KJ, Litt A, Zjhra ML Pires JC, Nepokroeff M, Conti E, Walker J, Wilson PG (2004) Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. Int J Plant Sci 165:S85–S105

  • Thornhill AH, Popple LW, Carter RJ, Ho SY, Crisp MD (2012) Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Mol Phyl Evol 63:15–27

    Article  Google Scholar 

  • Trisurat Y (2009) Application of geo-informatics for trans-boundary biodiversity conservation of the Pha Taem Protected forest. J Terres Observ 1:17–29

    Google Scholar 

  • Vicentini A (2007) Pagamea Aubl. (Rubiaceae), from species to processes, building the bridge. PhD thesis. University Of Missouri-Saint Louis

  • WDPA Consortium (2004) World database on protected areas. Version 2. World conservation union and UNEP-World conservation monitoring centre, Cambridge

  • Wilson PG (2011) The families and genera of vascular plants flowering plants. In: Kubitzki K (ed) Eudicots: Sapindales, Cucurbitales, Myrtaceae, vol 10. Springer

  • Wilson PG, O’Brien MM, Gadek PA, Quinn CJ (2001) Myrtaceae revisited: a reassessment of infrafamilial groups. Am J Bot 88(11):2013–2015

    Article  CAS  PubMed  Google Scholar 

  • Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Pl Syst Evol 251:3–19

    Article  Google Scholar 

  • World Checklist of Selected Plant species (WCSP) (2015) The board of trustees of the Royal Botanic Gardens, Kew. www.kew.org/wcsp. Accessed 29 Jan 2015

Download references

Acknowledgments

We gratefully acknowledge the input of three anonymous reviewers of this work who have much improved the content. We also acknowledge useful discussion with many of the Myrtaceae botanists and Atlantic Forest ecologists cited in this paper; in particular for useful comments from Vanessa Staggemeier. In addition we thank the laboratory staff, herbarium curators and field botanists who have supported the authors in the generation of much of the data reviewed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eve J. Lucas.

Additional information

Communicated by Jefferson Prado, Pedro V. Eisenlohr and Ary T. de Oliveira-Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, E.J., Bünger, M.O. Myrtaceae in the Atlantic forest: their role as a ‘model’ group. Biodivers Conserv 24, 2165–2180 (2015). https://doi.org/10.1007/s10531-015-0992-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0992-7

Keywords

Navigation