Skip to main content

Factors influencing early secondary succession and ecosystem carbon stocks in Brazilian Atlantic Forest

Abstract

Ecologically relevant restoration of secondary Atlantic forest on abandoned land offers a potential means to recover biodiversity and improve crucial ecosystem services, including carbon sequestration. Early secondary successional trajectories are determined by a range of environmental factors that influence plant community development. Context-specific understanding of forest vegetation communities, their dynamics, and underlying drivers is needed for future restoration strategies. In this study we examined relationships between soil (chemical and physical) and environmental (landscape and topographical) characteristics, plant community attributes, and carbon stocks during early secondary succession. Data were collected at two sites undergoing early secondary succession in seasonally-dry Atlantic Forest (Rio de Janeiro State, Brazil). Both sites were previously used for pasture and abandoned at similar times, but showed differing vegetation communities. We found tree biomass and diversity and ecosystem carbon storage to be strongly positively related to the amount of surrounding forest, less steep slopes and clay soils, and negatively to the abundance of the shrub Leandra aurea. Soil carbon pools significantly increased with aboveground tree biomass. The only factor significantly affecting the metric of overall successional development (combining tree biomass and diversity) was total surrounding forest cover. Our findings suggest recovery of secondary forest and below- and aboveground carbon storage is limited by the amount of adjacent forest, some soil properties and dense shrub establishment down-regulating the succession process. Overall we offer evidence of potential to improve recovery of Atlantic forest with ecologically relevant seeding/planting programmes and selective shrub removal that could benefit ecosystem carbon storage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. Aboveground biomass was chosen as a more direct measurement of abundance compared to basal area alone (Chazdon et al. 2007).

  2. Images were obtained from the Departamento de Ciências Florestais, Universidade Federal de Lavras (UFLA).

References

  • Alves LF, Metzger JP (2006) Forest regeneration in secondary forest areas at Morro Grande Forest Reserve, Cotia, SP (A regeneração florestal em áreas de floresta secundária na Reserva Florestal do Morro Grande, Cotia, SP). Biota Neotropica 6(2). http://www.biotaneotropica.org.br/v6n2/pt/abstract?article+bn00406022006. Accessed 15 Feb 2015

  • Amazonas NT, Martinelli LA, Piccolo MD, Rodrigues RR (2011) Nitrogen dynamics during ecosystem development in tropical forest restoration. For Ecol Manag 262(8):1551–1557. doi:10.1016/j.foreco.2011.07.003

    Article  Google Scholar 

  • Bentos TV, Nascimento HEM, Williamson GB (2013) Tree seedling recruitment in Amazon secondary forest: importance of topography and gap micro-site conditions. For Ecol Manag 287:140–146. doi:10.1016/j.foreco.2012.09.016

    Article  Google Scholar 

  • Berenguer E et al (2014) A large- scale field assessment of carbon stocks in human- modified tropical forests. Glob Change Biol 20(12):3713–3726. doi:10.1111/gcb.12627

    Article  Google Scholar 

  • Bernoux M, Carvalho MDS, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66(3):888–896

    CAS  Article  Google Scholar 

  • Bortolon L, Gianello C, Welter S, Almeida RGO, Giasson E (2011) Simultaneous extraction of phosphorus, potassium, calcium and magnesium from soils and potassium recommendations for crops in southern brazil. Pedosphere 21(3):365–372. doi:10.1016/S1002-0160(11)60137-9

    CAS  Article  Google Scholar 

  • Brancalion PH, Viani RA, Calmon M, Carrascosa H, Rodrigues RR (2013) How to organize a large-scale ecological restoration program? The framework developed by the Atlantic Forest Restoration Pact in Brazil. J Sustain For 32(7):728–744

    Article  Google Scholar 

  • Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Cid Ferreira CA, Victoria RA (1995) Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. For Ecol Manag 75(1):175–189. doi:10.1016/0378-1127(94)03512-U

    Article  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long- distance seed dispersal in plant populations. Am J Bot 87(9):1217–1227

    CAS  Article  PubMed  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science (New York, NY) 323(5915):785. doi:10.1126/science.1166955

    CAS  Article  Google Scholar 

  • Celentano D, Zahawi RA, Finegan B, Casanoves F, Ostertag R, Cole RJ, Holl KD (2011) Tropical forest restoration in Costa Rica: the effect of several strategies on litter production, accumulation and decomposition. Rev Biol Trop 59(3):1323–1336

    PubMed  Google Scholar 

  • Celis G, Jose S (2011) Restoring abandoned pasture land with native tree species in Costa Rica: effects of exotic grass competition and light. For Ecol Manag 261(10):1598–1604. doi:10.1016/j.foreco.2010.10.005

    Article  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum vol 12. Oxford, UK. doi:10.1111/j.1461-0248.2009.01285.x

    Google Scholar 

  • Chave J et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20(10):3177–3190. doi:10.1111/gcb.12629

    Article  Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol, Evol Syst 6(1):51–71. doi:10.1078/1433-8319-00042

    Article  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458–1460

    CAS  Article  PubMed  Google Scholar 

  • Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B (2007) Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos Trans 362(1478):273–289

    Article  Google Scholar 

  • Collins M et al. (2013) Long-term climate change: projections, commitments and irreversibility

  • Condit R, Engelbrecht BMJ, Pino D, Perez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci U S A 110(13):5064–5068. doi:10.1073/pnas.1218042110

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111(982):1119–1144

    Article  Google Scholar 

  • Cook WM, Yao J, Foster BL, Holt RD, Patrick LB (2005) Secondary succession in an experimentally fragmented landscape: community patterns across space and time. Ecology 86(5):1267–1279

    Article  Google Scholar 

  • Cooper M, Dalla Rosa J, Medeiros JC, de Oliveira TC, Toma RS, Juhasz CEP (2012) Hydro-physical characterization of soils under tropical semi-deciduous forest. Sci Agric 69(2):152–159

    Article  Google Scholar 

  • Davidson EA (2004) Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol Appl 14(4):S150–S163

    Article  Google Scholar 

  • Davidson EA et al (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447(7147):995. doi:10.1038/nature05900

    CAS  Article  PubMed  Google Scholar 

  • de Meira Junior MS, Pereira IM, Machado ELM, Mota SdLL, Otoni TJO (2015) Potential species for recovery of areas of semideciduous forest with iron exploration in the Serra Espinhaço (Especies potenciais para recuperação de áreas de floresta estacional semidecidual com exploração de minério de ferro na Serra do Espinhaço). Biosci J 31(1):283–295

    Article  Google Scholar 

  • de Souza PB, Martins SV, Costalonga SR, de Oliveira Costa G (2007) Floristics and structure of tree-shrub vegetation in the understory of Eucalyptus grandis W. Hill ex Maiden stands in Viçosa, MG, Brazil (Florística e estrutura da vegetação arbustivo-arbórea so sub-bosque de um povoamento de Eucalyptus grandis W. Hill ex Maiden em Viçosa, MG, Brasil). Revista Árvore 31(3):533–543

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci USA 99(22):14256–14261. doi:10.1073/pnas.182560099

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Deng L, Wang KB, Chen ML, Shangguan ZP, Sweeney S (2013) Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau China. Catena. doi:10.1016/j.catena.2013.06.016

    Google Scholar 

  • dos Santos APM, Fracasso CM, Luciene dos Santos M, Romero R, Sazima M, Oliveira PE (2012) Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. Ann Bot 110(3):667–679. doi:10.1093/aob/mcs125

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellsworth DS, Reich PB (1996) Photosynthesis and leaf nitrogen in five amazonian tree species during early secondary succession. Ecology 77(2):581–594. doi:10.2307/2265632

    Article  Google Scholar 

  • Ferraz S et al (2014) How good are tropical forest patches for ecosystem services provisioning? Landsc Ecol 29(2):187–200. doi:10.1007/s10980-014-9988-z

    Article  Google Scholar 

  • Finegan B (1996) Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends Ecol Evol 11(3):119–124. doi:10.1016/0169-5347(96)81090-1

    CAS  Article  PubMed  Google Scholar 

  • Flores O, Coomes DA (2011) Estimating the wood density of species for carbon stock assessments. Methods Ecol Evol 2(2):214–220. doi:10.1111/j.2041-210X.2010.00068.x

    Article  Google Scholar 

  • Fonseca W, Alice F, Rey-Benayas J (2012) Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. Int J Biol Biotechnol Manag Afforestation Refor 43(2):197–211. doi:10.1007/s11056-011-9273-9

    Google Scholar 

  • Fortini L, Bruna E, Zarin D, Vasconcelos S, Miranda I (2010) Altered resource availability and the population dynamics of tree species in Amazonian secondary forests. Oecologia 162(4):923–934. doi:10.1007/s00442-009-1524-5

    Article  PubMed  Google Scholar 

  • Fridley J, Wright J (2012) Drivers of secondary succession rates across temperate latitudes of the Eastern USA: climate, soils, and species pools. Oecologia 168(4):1069–1077. doi:10.1007/s00442-011-2152-4

    Article  PubMed  Google Scholar 

  • Fu BJ, Liu SL, Ma KM, Zhu YG (2004) Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad- leaved forest near Beijing, China. An Int J Plant-Soil Relat 261(1):47–54. doi:10.1023/B:PLSO.0000035567.97093.48

    CAS  Article  Google Scholar 

  • Garcia LC, Hobbs RJ, dos Santos FAM, Rodrigues RR (2014) Flower and fruit availability along a forest restoration gradient. Biotropica 46(1):114–123. doi:10.1111/btp.12080

    Article  Google Scholar 

  • Gibson L et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369):378. doi:10.1038/nature10425

    CAS  Article  PubMed  Google Scholar 

  • Godinho TD, Caldeira MVW, Rocha JHT, Caliman JP, Trazzi PA (2014) Quantification of biomass and nutrients in the accumulated litter in a section of submontane seasonal semideciduous forest. ES. CERNE 20(1):11–20

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148(1):185–206. doi:10.1016/S0378-1127(00)00535-1

    Article  Google Scholar 

  • Hasselquist NJ, Allen MF, Santiago LS (2010) Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164(4):881–890. doi:10.1007/s00442-010-1725-y

    Article  PubMed Central  PubMed  Google Scholar 

  • Hill JD, Canham CD, Wood DM (1995) Patterns and causes of resistance to tree invasion in rights-of-way. Ecol Appl 5(2):459–470. doi:10.2307/1942036

    Article  Google Scholar 

  • Holl KD (1999) Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica 31(2):229–242

    Article  Google Scholar 

  • Holl KD, Zahawi RA (2014) Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. For Ecol Manag. doi:10.1016/j.foreco.2014.01.024

    Google Scholar 

  • Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13(2):299–313

    Article  Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80(6):1892–1907

    Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories. Chapter 4: forest lands. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf. Accessed 15 Feb 2015

  • Johnson CM, Zarin DJ, Johnson AH (2000) Post- disturbance aboveground biomass accumulation in global secondary forests. Ecology 81(5):1395–1401

    Article  Google Scholar 

  • Kappelle M, Kennis P, Vries R (1995) Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodivers Conserv 4(1):10–34. doi:10.1007/BF00115312

    Article  Google Scholar 

  • Kettle CJ (2012) Seeding ecological restoration of tropical forests: Priority setting under REDD +. Biol Conserv. doi:10.1016/j.biocon.2012.03.016

    Google Scholar 

  • Klanderud K, Mbolatiana H, Vololomboahangy M, Radimbison M, Roger E, Totland Ø, Rajeriarison C (2010) Recovery of plant species richness and composition after slash-and-burn agriculture in a tropical rainforest in Madagascar. Biodivers Conserv 19(1):187–204. doi:10.1007/s10531-009-9714-3

    Article  Google Scholar 

  • Knoepp JD, Coleman DC, Crossley DA, Clark JS (2000) Biological indices of soil quality: an ecosystem case study of their use. For Ecol Manag 138(1):357–368. doi:10.1016/S0378-1127(00)00424-2

    Article  Google Scholar 

  • Kuers K (2005) Ranking species contribution to forest community composition: calculation of importance values. http://static.sewanee.edu/Forestry_Geology/watershed_web/Emanuel/ImportanceValues/ImpVal_SET.html Accessed 15 Feb 2015

  • Lawrence D (2003) The response of tropical tree seedlings to nutrient supply: meta-analysis for understanding a changing tropical landscape. J Trop Ecol. doi:10.1017/S0266467403003274

    Google Scholar 

  • Li YL et al (2013) Changes in forest soil properties in different successional stages in lower tropical China. Plos One. doi:10.1371/journal.pone.0081359

    Google Scholar 

  • Loyola R, Lemes P, Nabout J, Trindade-Filho J, Sagnori M, Dobrovolski R, Diniz-Filho J (2013) A straightforward conceptual approach for evaluating spatial conservation priorities under climate change. Biodivers Conserv 22(2):483–495. doi:10.1007/s10531-012-0424-x

    Article  Google Scholar 

  • Lu D, Moran E, Mausel P (2002) Linking amazonian secondary succession forest growth to soil properties. Land Degrad Dev 13(4):331–343. doi:10.1002/ldr.516

    Article  Google Scholar 

  • Lu X, Mo J, Gilliam FS, Yu G, Zhang W, Fang Y, Huang J (2011) Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China. Environ Pollut 159(10):2228–2235. doi:10.1016/j.envpol.2010.10.037

    CAS  Article  PubMed  Google Scholar 

  • Macedo MO et al (2008) Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen- fixing trees. For Ecol Manag 255(5):1516–1524. doi:10.1016/j.foreco.2007.11.007

    Article  Google Scholar 

  • Marín-Spiotta E, Ostertag R, Silver WL (2007) Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecol Appl 17(3):828

    Article  PubMed  Google Scholar 

  • Martinez-Garza C, Howe H (2003) Restoring tropical diversity: beating the time tax on species loss. J Appl Ecol 40(3):423–429

    Article  Google Scholar 

  • Martini A, Fiaschi P, Amorim A, Paixão J (2007) A hot- point within a hot- spot: a high diversity site in Brazil’s Atlantic Forest. Biodivers Conserv 16(11):3111–3128. doi:10.1007/s10531-007-9166-6

    Article  Google Scholar 

  • Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28(8):462–468. doi:10.1016/j.tree.2013.01.001

    Article  PubMed  Google Scholar 

  • Melvin KKK, Japar SB, Osumanu HA, Nik MAM, Roland KJH, Silvester J (2011) Comparison of carbon and selected macronutrients in forest-floor litter of rehabilitated and secondary forests. Am J Appl Sci 8(10):967

    Article  Google Scholar 

  • Metzger JP (2009) Conservation issues in the Brazilian Atlantic. Forest. doi:10.1016/j.biocon.2008.10.012

    Google Scholar 

  • Montagnini F, Fanzeres A, DaVinha SG (1995) The potentials of 20 indigenous tree species for soil rehabilitation in the Atlantic forest region of Bahia, Brazil. J Appl Ecol 32(4):841–856

    Article  Google Scholar 

  • Moran EF, Brondizio ES, Tucker JM, da Silva-Forsberg MC, McCracken S, Falesi I (2000) Effects of soil fertility and land- use on forest succession in Amazônia. For Ecol Manag 139(1):93–108. doi:10.1016/S0378-1127(99)00337-0

    Article  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32(4B):786–792

    Article  Google Scholar 

  • Muiz-Castro MA, Williams-Linera G, Benayas JMR (2006) Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J Trop Ecol 22(4):431–440. doi:10.1017/S0266467406003221

    Article  Google Scholar 

  • Nascimento HEM, Andrade ACS, Camargo JLC, Laurance WE, Laurance SG, Ribeiro JEL (2006) Effects of the surrounding matrix on tree recruitment in Amazonian forest fragments. Conserv Biol 20(3):853

    Article  PubMed  Google Scholar 

  • Nelson B, Mesquita R, Pereira J, de Souza S, Batista G, Couto L (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manag 117(1–3):149–167. doi:10.1016/S0378-1127(98)00475-7

    Article  Google Scholar 

  • Osman N, Barakbah SS (2010) The effect of plant succession on slope stability. Ecol Eng 37(2):139–147. doi:10.1016/j.ecoleng.2010.08.002

    Article  Google Scholar 

  • Pan Y et al (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    CAS  Article  PubMed  Google Scholar 

  • Putz FE, Canham CD (1992) Mechanisms of arrested succession in shrublands: root and shoot competition between shrubs and tree seedlings. For Ecol Manag 49(3):267–275. doi:10.1016/0378-1127(92)90140-5

    Article  Google Scholar 

  • Putz FE, Redford KH (2010) The importance of defining ‘forest’: tropical forest degradation, deforestation, long-term phase shifts, and further transitions. Biotropica 42(1):10–20. doi:10.1111/j.1744-7429.2009.00567.x

    Article  Google Scholar 

  • Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001) Long- term studies of vegetation dynamics. Science 293(5530):650–655

    CAS  Article  PubMed  Google Scholar 

  • Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4(2):363–377. doi:10.2307/1941940

    Article  Google Scholar 

  • Ribeiro M, Metzger J, Martensen A, Ponzoni F, Hirota M (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implic Conserv Biol Conserv 142(6):1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Rodrigues RR, Martins SV, de Barros LC (2004) Tropical Rain Forest regeneration in an area degraded by mining in Mato Grosso State, Brazil. For Ecol Manag 190(2):323–333. doi:10.1016/j.foreco.2003.10.023

    Article  Google Scholar 

  • Rodrigues R, Lima R, Gandolfi S, Nave A (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142(6):1242–1251. doi:10.1016/j.biocon.2008.12.008

    Article  Google Scholar 

  • Rondon Neto RM, Botelho SA, Fontes MAL, Davide AC, Faria JMR (2000) Structure and floristic composition of the tree and shrub community of a forest gap of anthropogenic origin, in a montane semideciduous seasonal forest, Lavras-MG, Brazil (Estrutura e composição florística da comunidade arbustivo-arbórea de uma clareira de origem antrópica, em uma floresta estacional semidecídua montana, Lavras-MG, Brasil). CERNE 6(2):79–94

    Google Scholar 

  • Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long- term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela. J Ecol 76(4):938–958

    Article  Google Scholar 

  • Sang PM, Lamb D, Bonner M, Schmidt S (2013) Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant Soil 362(1–2):187–200. doi:10.1007/s11104-012-1281-9

    CAS  Article  Google Scholar 

  • Siddique I et al (2010) Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology 91(7):2121–2131

    Article  PubMed  Google Scholar 

  • Silveira FAO, Fernandes GW, Lemos-Filho JP (2013) Seed and seedling ecophysiology of neotropical Melastomataceae: implications for conservation and restoration of savannas and rainforests. Ann Mo Bot Gard 99(1):82–99. doi:10.3417/2011054

    Article  Google Scholar 

  • Styger E, Rakotondramasy HM, Pfeffer MJ, Fernandes ECM, Bates DM (2007) Influence of slash-and- burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agric Ecosyst Environ 119(3):257–269. doi:10.1016/j.agee.2006.07.012

    Article  Google Scholar 

  • Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143(10):2328–2340. doi:10.1016/j.biocon.2010.02.005

    Article  Google Scholar 

  • Uriarte M, Anciaes M, da Silva MTB, Rubim P, Johnson E, Bruna EM (2011) Disentangling the drivers of reduced long- distance seed dispersal by birds in an experimentally fragmented landscape. Ecology 92(4):924–937

    Article  PubMed  Google Scholar 

  • Valdez-Hernández M, Sánchez O, Islebe GA, Snook LK, Negreros-Castillo P (2014) Recovery and early succession after experimental disturbance in a seasonally dry tropical forest in Mexico. For Ecol Manag. doi:10.1016/j.foreco.2014.09.018

    Google Scholar 

  • van Breugel M, Martinez-Ramos M, Bongers F (2006) Community dynamics during early secondary succession in Mexican tropical rain forests. J Trop Ecol. doi:10.1017/S0266467406003452

  • Vieira I, Uhl C, Nepstad D (1994) The role of the shrub Cordia multispicata Cham. as a ‘succession facilitator’ in an abandoned pasture, Paragominas, Amazônia. Vegetatio 115(2):91–99. doi:10.1007/BF00044863

    Google Scholar 

  • Wall A, Heiskanen J (2003) Water- retention characteristics and related physical properties of soil on afforested agricultural land in Finland. For Ecol Manag 186(1):21–32. doi:10.1016/S0378-1127(03)00239-1

    Article  Google Scholar 

  • Wright SJ (2010) The future of tropical forests. Ann NY Acad Sci 11951(1):1–27. doi:10.1111/j.1749-6632.2010.05455.x

    Article  Google Scholar 

  • Xiong YM, Zeng H, Xia HP, Guo DL (2014) Interactions between leaf litter and soil organic matter on carbon and nitrogen mineralization in six forest litter- soil systems. Plant Soil 379(1–2):217–229. doi:10.1007/s11104-014-2033-9

    CAS  Article  Google Scholar 

  • Yassir I, van der Kamp J, Buurman P (2010) Secondary succession after fire in Imperata grasslands of East Kalimantan, Indonesia. Agric Ecosyst Environ 137(1–2):172–182. doi:10.1016/j.agee.2010.02.001

    Article  Google Scholar 

  • Zalamea PC et al (2012) The genus cecropia: a biological clock to estimate the age of recently disturbed areas in the neotropics. PLoS One. doi:10.1371/journal.pone.0042643

    PubMed Central  PubMed  Google Scholar 

  • Zanne AE et al (2009) Global wood density database. Dryad data package. http://hdl.handle.net/10255/dryad.235. Accessed 15 Feb 2015

  • Zarin DJ (2012) Carbon from tropical deforestation. Science 336(6088):1518–1519. doi:10.1126/science.1223251

    CAS  Article  PubMed  Google Scholar 

  • Zimmerman JK, Pascarella JB, Aide TM (2000) Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restor Ecol 8(4):350–360

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out as part of the project “Comparative analysis of fragments and restored areas surrounding the Funil reservoir to readjust Eletrobrás-Furnas restoration projects” (“Análise comparativa dos fragmentos e reflorestamentos no entorno do reservatório, visando à readequação de projetos de restauração na Eletrobrás Furnas”, funded by Furnas-Aneel). We thank the Centro de Recuperação de Itatiaia for granting access to study areas. We acknowledge and thank Professors Rubens Manoel dos Santos and Mariana Esteves Mansanares, Universidade Federal de Lavras (UFLA), for plant species identification, and the Departamento de Ciências Florestais for providing aerial imagery. We express our thanks to those who assisted in the fieldwork and analyses, including William dos Santos Ribeiro, Luan Fereira, Danilo Almeida, Leonardo Tavares, Flávia Freire de Siqueira and Guilherme Ramos Demetrio. We are sincerely grateful to Professor Carlos Alberto Silva, Departamento de Ciência do Solo, Universidade Federal de Lavras (UFLA), for valuable advice and the use of equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. B. Robinson.

Additional information

Communicated by Jefferson Prado, Pedro V. Eisenlohr and Ary T. de Oliveira-Filho.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robinson, S.J.B., van den Berg, E., Meirelles, G.S. et al. Factors influencing early secondary succession and ecosystem carbon stocks in Brazilian Atlantic Forest. Biodivers Conserv 24, 2273–2291 (2015). https://doi.org/10.1007/s10531-015-0982-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0982-9

Keywords

  • Tropical secondary forest
  • Abandoned pasture
  • Soil characteristics
  • Ecological restoration
  • Facilitation
  • Inhibition
  • Melastomataceae
  • Leandra aurea
  • Seed dispersal