Skip to main content

Amphibians and conservation breeding programmes: do all threatened amphibians belong on the ark?

Abstract

Amphibians are facing an extinction crisis, and conservation breeding programmes are a tool used to prevent imminent species extinctions. Compared to mammals and birds, amphibians are considered ideal candidates for these programmes due to their small body size and low space requirements, high fecundity, applicability of reproductive technologies, short generation time, lack of parental care, hard wired behaviour, low maintenance requirements, relative cost effectiveness of such programmes, the success of several amphibian conservation breeding programmes and because captive husbandry capacity exists. Superficially, these reasons appear sound and conservation breeding has improved the conservation status of several amphibian species, however it is impossible to make generalisations about the biology or geo-political context of an entire class. Many threatened amphibian species fail to meet criteria that are commonly cited as reasons why amphibians are suitable for conservation breeding programmes. There are also limitations associated with maintaining populations of amphibians in the zoo and private sectors, and these could potentially undermine the success of conservation breeding programmes and reintroductions. We recommend that species that have been assessed as high priorities for ex situ conservation action are subsequently individually reassessed to determine their suitability for inclusion in conservation breeding programmes. The limitations and risks of maintaining ex situ populations of amphibians need to be considered from the outset and, where possible, mitigated. This should improve programme success rates and ensure that the limited funds dedicated to ex situ amphibian conservation are allocated to projects which have the greatest chance of success.

This is a preview of subscription content, access via your institution.

References

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Altherr S, Goyenechea A, Schubert D (2011) Canapés to extinction—the international trade in frogs’ legs and its ecological impact. A report by pro Wildlife, defenders of Wildlife and animal Welfare institute Munich and Washington

  • Anderson US, Kelling AS, Maple TL (2008) Twenty-five years of zoo biology: a publication analysis. Zoo Biol 26:444–457

    Article  Google Scholar 

  • Andrén C, Mårdén M, Nilson G (1989) Tolerance to low pH in a population of moor frogs, Rana arvalis, from an acid and a neutral environment: a possible case of rapid evolutionary response to acidification. Oikos 56:215–223

    Article  Google Scholar 

  • Antwis RE, Browne RK (2009) Ultraviolet radiation and vitamin D3 in amphibian health, behavior, diet and conservation. Comp Biochem Physiol Part A 154:184–190

    CAS  Article  Google Scholar 

  • Antwis RE, Haworth RL, Engelmoer DJP, Ogilvy V et al (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS ONE. doi:10.1371/journal.pone.0085563

    Google Scholar 

  • Araki H, Cooper B, Blouin MS (2009) Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol Lett 5:621–624

    PubMed Central  PubMed  Article  Google Scholar 

  • Azevedo Calderon L, Silva Ade A, Ciancaglini P, Stábeli RG (2011) Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 40:29–49

    PubMed  Article  CAS  Google Scholar 

  • Badio B, Daly JW (1994) Epibatidine, a potent analgetic and nicotinic agonist. Mol Pharmacol 1:564–571

    Google Scholar 

  • Balmford A, Mace GM, Leader-Williams N (1996) Designing the ark: setting priorities for captive breeding. Conserv Biol 10:719–727

    Article  Google Scholar 

  • Barber D, Poole V (eds) (2014) Association of zoos and aquariums amphibian taxon advisory group regional collection plan, 3rd edn. Association of zoos and aquariums, Maryland

    Google Scholar 

  • Bielby J, Cooper N, Cunningham AA, Garner TWJ, Purvis A (2008) Predicting susceptibility to future declines in the world’s frogs. Conserv Lett 1:82–90

    Article  Google Scholar 

  • Birkett J, Vincent M, Banks C (1999) Captive management and rearing of the roseate frog, Geocrinia rosea, at Melbourne Zoo. Herpetofauna 29:49–56

    Google Scholar 

  • Bishop PJ, Angulo A, Lewis JP et al (2012) The amphibian extinction crisis—what will it take to put the action into the amphibian conservation action plan? SAPIENS 5:97–111

    Google Scholar 

  • Bloxam QC, Tonge SJ (1995) Amphibians: suitable candidates for breeding-release programmes. Biodivers Conserv 4:636–644

    Article  Google Scholar 

  • Bowkett AE (2009) Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conserv Biol 23:773–776

    PubMed  Article  Google Scholar 

  • Brattstrom BH (1990) Maze learning in the fire-bellied toad, Bombina orientalis. J Herpetol 24:44–47

    Article  Google Scholar 

  • Bride IG, Griffiths RA, Meléndez-Herrada A, McKay JE (2008) Flying an amphibian flagship: conservation of the Axolotl Ambystoma mexicanum through nature tourism at Lake Xochimilco, Mexico. Int Zoo Yearb 42:116–124

    Article  Google Scholar 

  • Browne RK, Zippel K (2007) Reproduction and larval rearing of amphibians. ILAR J 48:214–234

    CAS  PubMed  Article  Google Scholar 

  • Browne RK, Seratt J, Vance C, Kouba A (2006) Hormonal induction with priming and in vitro fertilisation increases egg numbers and quality in the Wyoming toad (Bufo baxteri). Reprod Biol Endocrinol 4:1–11

    Article  CAS  Google Scholar 

  • Browne RK, Odum RA, Herman T, Zippel K (2007) Facility design and the associated services for the study of amphibians. ILAR J 48:188–202

    CAS  PubMed  Article  Google Scholar 

  • Browne RK, Gaikhorst G, Vitali S, Roberts JD, Matson P (2008) Exogenous hormones induce poor rates of oviposition in the anurans, Litoria moorei and L. aurea. Appl Herpetol 15:81–86

    Article  Google Scholar 

  • Browne RK, Wolfram K, Garcia G, Bagaturov M, Pereboom ZJJM (2011) Zoo-based amphibian research and conservation programs. Amphib Reptile Conserv 5:1–14

    Google Scholar 

  • Chan HK, Shoemaker KT, Karraker NE (2014) Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol Cons 170:3–9

    Article  Google Scholar 

  • Cikanek SJ, Nockold S, Brown JL et al (2014) Evaluating group housing strategies for the ex situ conservation of harlequin frogs (Atelopus spp) using behavioural and physiological indicators. PLoS ONE. doi:10.1371/journal.pone.0090218

    PubMed Central  PubMed  Google Scholar 

  • Clulow J, Clulow S, French Guo J et al (2012) Optimisation of an oviposition protocol employing human chorionic and pregnant mare serum gonadotropins in the Barred Frog Mixophyes fasciolatus (Myobatrachidae). Repro Biol Endocrin. doi:10.1186/1477-7827-10-60

    Google Scholar 

  • Collen B, Ram M, Zamin T, McRae L (2008) The tropical biodiversity gap: addressing disparity in global monitoring. Trop Conserv Sci 1:75–88

    Google Scholar 

  • Collins JP, Crump ML (2009) Extinction in our times. Oxford University Press, New York

    Google Scholar 

  • Coloma LA, Almeida-Reinoso D (2012) Ex situ management of five extant species of Atelopus in Ecuador—progress report. Amphib Ark Newslett 20:9–12

    Google Scholar 

  • Crane AL, Mathis A (2011) Predator-recognition training: a conservation strategy to increase post release survival of hellbenders in head-starting programs. Zoo Biol 30:611–622

    PubMed  Article  Google Scholar 

  • Crump M (2005) Why are some species in decline but others not? In: Lannoo M (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley and Los Angeles, pp 28–33

    Google Scholar 

  • Cunningham AA, Daszak P, Rodriguez JP (2003) Pathogen pollution, defining a parasitological threat to biodiversity conservation. J Parasitol 89:S78–S83

    Google Scholar 

  • Daly JW, Myers CW, Warnick JE, Albuquerque EX (1980) Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science 208:1383–1385

    CAS  PubMed  Article  Google Scholar 

  • Dawson B, Ryan MJ (2012) Evoked vocal responses change with experience in male Physalaemus pustulosus. Copeia 2012:678–682

    Article  Google Scholar 

  • Densmore CL, Green DE (2007) Diseases of amphibians. ILAR J 48:235–254

    CAS  PubMed  Article  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of Amphibians. John Hopkins University Press, Baltimore

    Google Scholar 

  • Dugas MB, Yeager J, Richards-Zawacki CL (2013) Carotenoid supplementation enhances reproductive success in captive strawberry dart frogs (Oophaga pumilio). Zoo Biol 32:655–658

    CAS  PubMed  Article  Google Scholar 

  • Edmonds D, Rakotoarisoa JC, Dolch R et al (2012) Building capacity to implement conservation breeding programmes for frogs in Madagascar: results from year one of Mitinjo’s amphibian husbandry research and captive breeding facility. Amphib Reptile Conserv 5:57–69

    Google Scholar 

  • Epp KJ, Gabor CR (2008) Innate and learned predator recognition mediated by chemical signals in Eurycea nana. Ethol 114:607–615

    Article  Google Scholar 

  • Estrada AR, Hedges B (2006) At the lower size limit in tetrapods: a new diminutive frog from Cuba (Leptodactylidae: Eleutherodactylus). Copeia 4:853–859

    Google Scholar 

  • Ferrari MC, Chivers DP (2008) Cultural learning of predator recognition in mixed-species assemblages of frogs: the effect of tutor-to-observer ratio. Anim Behav 75:1921–1925

    Article  Google Scholar 

  • Fleming RI, Mackenzie CD, Cooper A, Kennedy MW (2009) Foam nest components of the túngara frog: a cocktail of proteins conferring physical and biological resistance. Proc R Soc B 276:1787–1795

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  • Ford MJ (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv Biol 16:815–825

    Article  Google Scholar 

  • Foufopoulos J, Richards S (2007) Amphibians and reptiles of New Britain island, Papua New Guinea: diversity and conservation status. Hamadryad 31:176–201

    Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    PubMed  Article  Google Scholar 

  • Frankham R, Loebel DA (1992) Modelling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo Biol 11:333–342

    Article  Google Scholar 

  • Frankham R, Manning H, Margan SH, Briscoe DA (2000) Does equalization of family sizes reduce genetic adaptation to captivity? Anim Conserv 3:357–363

    Article  Google Scholar 

  • Gagliardo R, Crump P, Griffith E et al (2008) The principles of rapid response for amphibian conservation, using the programmes in Panama as an example. Int Zoo Yearb 42:124–135

    Article  Google Scholar 

  • Gagliardo R, Griffith E, Hill R et al (2010) Observation on the captive reproduction of the horned marsupial frog Gastrotheca cornuta (Boulenger 1898). Herpetol Rev 41:52–58

    Google Scholar 

  • Gascon C, Collins JP, Moore RD et al (eds) (2007) Amphibian conservation action plan. IUCN/SSC Amphibian Specialist Group, Gland

    Google Scholar 

  • Gawor A, Rauhaus A, Karbe D et al (2012) Is there a chance for conservation breeding? Ex situ management, reproduction, and early life stages of the harlequin toad Atelopus flavescens Duméril & Bibron, 1841 (Amphibia: Anura: Bufonidae). Amphib Reptile Conserv 5:29–44

    Google Scholar 

  • Godfrey EW, Sanders GE (2004) Effect of water hardness on oocyte quality and embryo development in the african clawed frog (Xenopus laevis). Comp Med 54:140–145

    Google Scholar 

  • Gonwou LN, Rödel MO (2008) The importance of frogs to the livelihood of the Bakossi people around Mount Manengouba, Cameroon, with special consideration of the hairy frog Trichobatrachus robustus. Salamandra 44:23–34

    Google Scholar 

  • Gower DJ, Doherty Bone T, Loader SP et al (2013) Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians Gymnophiona. EcoHealth. doi:10.1007/s10393-013-0831-9

    PubMed  Google Scholar 

  • Gratwicke B, Evans MJ, Jenkins PT et al (2010) Is the international frog legs trade a potential vector for deadly amphibian pathogens? Front Ecol Environ 8:438–442

    Article  Google Scholar 

  • Gray MJ, Miller DL, Hoverman JT (2009) Ecology and pathology of amphibian ranaviruses. Dis Aquat Organ 87:243–266

    PubMed  Article  Google Scholar 

  • Griffiths RA, Pavajeau L (2008) Captive breeding, reintroduction and the conservation of amphibians. Conserv Biol 22:852–861

    PubMed  Article  Google Scholar 

  • Groom M, Meffe GK, Carroll CR (2006) Principles of conservation biology, 3rd edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Guarino FM, Garcia G, Andreone F (2014) Huge but moderately long lived: age structure in the mountain chicken, Leptodactylus fallax, from Montserrat, West Indies. Herpetol J 24:167–173

    Google Scholar 

  • Hermanns K, Pinxten R, Eens M (2002) Territorial and vocal behaviour in a captive dart-poison frog, Epipedobates tricolor Boulenger, 1899 (Anura: Dendrobatidae). Belg J Zool 132:105–109

    Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

    CAS  PubMed  Article  Google Scholar 

  • Holland B, Rice WR (1999) Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Nat Acad Sci 96:5083–5088

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  • Igawa T, Sugawara H, Tado M et al (2013) An attempt at captive breeding the endangered newt Echninotriton andersoni from the central Ryukyus Japan. Anim 3:680–692

    Article  Google Scholar 

  • Iskandar DT, Erdelen WR (2006) Conservation of amphibians and reptiles in Indonesia: issues and problems. Amphib Reptile Conserv 4:60–87

    Google Scholar 

  • James RS, Wilson RS (2008) Explosive jumping: extreme morphological and physiological specializations of Australian rocket frogs (Litoria nasuta). Physiol Biochem Zool 8:176–185

    Article  Google Scholar 

  • Jenkin SE, Laberge F (2010) Visual discrimination learning in the fire-bellied toad Bombina orientalis. Learn Behav 38:418–425

    PubMed  Article  Google Scholar 

  • Kawata K (2008) Hanzaki pilgrimage: a visit to the home of the giant amphibian. Herpetol Rev 39:407–412

    Google Scholar 

  • Kern S, Ackermann M, Stearns SC, Kawecki TJ (2001) Decline in offspring viability as a manifestation of aging in Drosophila melanogaster. Evolution 55:1822–1831

    CAS  PubMed  Article  Google Scholar 

  • Kouba AJ, Vance CK, Willis EL (2009) Artificial fertilization for amphibian conservation: current knowledge and future considerations. Theriogenology 71:214–227

    CAS  PubMed  Article  Google Scholar 

  • Kouba AJ, Vance C, Calatayud N et al (2012) Assisted reproductive technologies (ART) for amphibians. Chapter 2 in Amphibian Husbandry Resource Guide, Edition 2.0. AZA Amphibian Taxon Advisory Group

  • Kraaijeveld-Smit FJL, Griffiths RA, Moore RD, Beebee TJC (2006) Captive breeding and the fitness of reintroduced species: a test of the response to predators in a threatened amphibian. J Appl Ecol 43:360–365

    Article  Google Scholar 

  • Liang G, Geng B, Zhao E (2004) Andrias davidianus. The IUCN Red List of Threatened Species. Version 2015.2. http://www.iucnredlist.org. Retrieved 21 July 2015

  • Lötters S, Kielgast J, Bielby J et al (2009) The link between rapid enigmatic amphibian decline and the globally emerging chytrid fungus. EcoHealth 6:358–372

    PubMed  Article  Google Scholar 

  • Loudon AH, Woodhams DC, Parfrey L et al (2013) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  • Maan ME, Cummings ME (2012) Poison frog colors are honest signals of toxicity, particularly for bird predators. Am Nat 179:E1–E14

    PubMed  Article  Google Scholar 

  • Malhotra A, Thorpe RS, Hypolite E, James R (2007) A report on the status of the herpetofauna of the Commonwealth of Dominica, West Indies. Appl Herpetol 4:177–194

    Article  Google Scholar 

  • Mann RM, Hyne RV, Choung CB (2010) Hormonal induction of spermiation, courting behavior and spawning in the southern bell frog, Litoria raniformis. Zoo biol 29:774–782

    CAS  PubMed  Article  Google Scholar 

  • Margan SH, Nurthen RK, Montgomery ME et al (1998) Single large or several small? Population fragmentation in the captive management of endangered species. Zoo Biol 17:467–480

    Article  Google Scholar 

  • Martins F, Oom MDM, Rebelo R, Rosa GM (2013) Differential effects of dietary protein on early life history and morphological traits in natterjack toad (Epidalea calamita) tadpoles reared in captivity. Zoo Biol 32:457–462

    CAS  PubMed  Article  Google Scholar 

  • Maruska EJ (1986) Amphibians: a review of zoo breeding programmes. Int Zoo Yearb 24:56–65

    Article  Google Scholar 

  • Merilä J, Söderman F, O’Hara R, Räsänen K, Laurila A (2004) Local adaptation and genetics of acid-stress tolerance in the moor frog, Rana arvalis. Conserv Genet 5:513–527

    Article  Google Scholar 

  • Michael SF, Buckley C, Esteban T, Estrada AR, Vincent S (2004) Induced ovulation and egg deposition in the direct developing anuran Eleutherodactylus coqui. Repro Biol Endocrin. doi:10.1186/1477-7827-2-6

    Google Scholar 

  • Michaels CJ, Preziosi R (2013) Basking behaviour and ultraviolet B radiation exposure in a wild population of Pelophylax lessonae in Northern Italy. Herpetol Bull 124:1–8

    Google Scholar 

  • Michaels CJ, Preziosi R (2015) Fitness effects of shelter provision for captive amphibian tadpoles. Herpetol J 25:7–12

    Google Scholar 

  • Michaels CJ, Gini B, Preziosi R (2014a) The importance of natural history and species specific approaches in amphibian ex situ conservation. Herpetol J 24:135–145

    Google Scholar 

  • Michaels CJ, Downie JR, Campbell-Palmer R (2014b) The importance of enrichment for advancing amphibian welfare and conservation goals: a review of a neglected topic. Amphib Reptile Conser 8:7–23

    Google Scholar 

  • Michaels CJ, Antwis R, Preziosi R (2014c) Impacts of UVB provision and dietary calcium content on serum vitamin D3 growth rates, skeletal structure and coloration in captive oriental fire-bellied toads (Bombia orientalis). J Anim Physiol Anim Nutr. doi:10.1111/jpn.12203

    Google Scholar 

  • Michaels CJ, Antwis R, Preziosi R (2014d) Impact of plant cover on fitness and behavioural traits of captive red-eyed tree frogs (Agalychnis callidryas). PLoS ONE 9:e95207

    PubMed Central  PubMed  Article  Google Scholar 

  • Miller DL, Rajeev S, Brookins M et al (2008) Concurrent infection with ranavirus, Batrachochytrium dendrobatidis, and Aeromonas in a captive anuran colony. J Zoo Wildlife Med 39:445–449

    Article  Google Scholar 

  • Minteer BA, Collins JP (2013) Ecological ethics in captivity: Balancing values and responsibilities in zoo and aquarium research under rapid global change. ILAR J 54:41–51

    CAS  PubMed  Article  Google Scholar 

  • Norris S (2007) Ghosts in our midst: coming to terms with amphibian extinctions. Biosceince 57:311–316

    Article  Google Scholar 

  • Ogilvy V, Preziosi R (2011) Can carotenoids mediate the potentially harmful effects of ultraviolet light in Silurana (Xenopus) tropicalis larvae? J Anim Physiol Nutr 96:693–699

    Article  CAS  Google Scholar 

  • Ogilvy V, Preziosi RF, Fidgett AL (2012) A brighter future for frogs? The influence of carotenoids on the health, development and reproductive success of the red-eye tree frog. Anim Conserv 15:480–488

    Article  Google Scholar 

  • Pessier AP, Mendelson JR (2010) A manual for the control of infectious disease in amphibian survival assurance colonies and reintroduction programmes. IUCNSSC Conservation breeding specialist group, Minnesota

    Google Scholar 

  • Preece DJ (1998) The captive management and breeding of poison-dart frogs, family Dendrobatidae, at Jersey Wildlife preservation trust. Dodo 34:103–114

    Google Scholar 

  • Preininger D, Weissenbacher A, Wampula T, Hödl W (2012) The conservation breeding of two foot-flagging frog species from Borneo, Staurois parvus and Staurois guttatus. Amphib Reptile Conserv 5:45–56

    Google Scholar 

  • Pritchard DJ, Fa JE, Oldfield S, Harrop SR (2013) Bring the captive closer to the wild: redefining the role of ex situ conservation. Oryx 46:18–23

    Article  Google Scholar 

  • Pryor GS (2014) Tadpole nutritional ecology and digestive physiology: implications for captive rearing of larval anurans. Zoo Biol 3:502–507

    Article  Google Scholar 

  • Räsänen KR, Laurila A, Merilä J (2003a) Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evolution 57:352–362

    PubMed  Article  Google Scholar 

  • Räsänen K, Laurila A, Merilä J (2003b) Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects. Evolution 57:363–371

    PubMed  Article  Google Scholar 

  • Redford KH, Jensen D, Breheny JJ (2012) Integrating the captive and the wild. Science 338:1157–1158

    PubMed  Article  Google Scholar 

  • Rija AA, Khatibu FH, Kohi EM, Muheto R (2011) Status and reintroduction of the Kihansi spray toad Nectophrynoides asperginis in Kihansi gorge: challenges and opportunities. In: Proceedings of the 7th TAWIRI Scientific Conference. Tanzania Wildlife institute, Arusha

  • Robertson RJ, Rendell WB (2001) A long-term study of reproductive performance in tree swallows: the influence of age and senescence on output. J Anim Ecol 70:1014–1031

    Article  Google Scholar 

  • Robertson JM, Robertson AD (2008) Spatial and temporal patterns of phenotypic variation in a neotropical frog. J Biogeogr 35:830–843

    Article  Google Scholar 

  • Rodríguez A, Poth D, Schulz S, Vences M (2010) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett. doi:10.1098/rsbl.2010.0844

    Google Scholar 

  • Rowley J, Brown R, Kusrini M et al (2010) Impending conservation crisis for Southeast Asian amphibians. Biol Lett 6:336–338

    PubMed Central  PubMed  Article  Google Scholar 

  • Scheele BC, Hunter DA, Grogan LF, Berger L et al (2014) Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv Biol 28:1195–1205

    PubMed  Article  Google Scholar 

  • Silla AJ, Roberts JD (2012) Investigating patterns in the spermiation response of eight Australian frogs administered human chorionic gonadotropin (hCG) and luteinizing hormone-releasing hormone (LHRHa). Gen Comp Endocr 179:128–136

    CAS  PubMed  Article  Google Scholar 

  • Smith RK, Sutherland WJ (2014) Amphibian conservation: global evidence for the effects of interventions. Pelagic Publishing, Exeter

    Google Scholar 

  • Snyder NFR, Derrickson SR, Beissinger SR et al (1996) Limitations of captive breeding in endangered species recovery. Conserv Biol 10:338–348

    Article  Google Scholar 

  • Sontag C, Wilson DS, Wilcox RS (2006) Social foraging in Bufo americanus tadpoles. Anim Behav 72:1451–1456

    Article  Google Scholar 

  • St-Amour V, Lesbarrères D (2007) Genetic evidence of Ranavirus in toe clips: an alternative to lethal sampling methods. Conserv Genet 8:1247–1250

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    CAS  PubMed  Article  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS et al (2008) Threatened amphibians of the world. Lynx Edicions, Barcelona, Spain. IUCN, Gland and Conservation International, Virginia

    Google Scholar 

  • Tapley B, Griffiths RA, Bride I (2011) Dynamics of the trade in reptiles and amphibians within the United Kingdom within a ten-year period. Herpetol J 21:27–34

    Google Scholar 

  • Tapley B, Bryant Z, Grant S et al (2014a) Towards evidence-based husbandry for caecilian amphibians: substrate preference in Geotrypetes seraphini (Amphibia: Gymnophiona: Dermophiidae). Herpetol Bull 129:15–18

    Google Scholar 

  • Tapley B, Harding L, Sulton M et al (2014b) An overview of current efforts to conserve the critically endangered mountain chicken (Leptodactylus fallax) on Dominica. Herpetol Bull 128:9–11

    Google Scholar 

  • Tapley B, Rendle M, Baines FM et al (2015) Meeting ultraviolet B radiation requirements of amphibians in captivity: a case study with mountain chicken frogs (Leptodactylus fallax) and general recommendations for pre-release health screening. Zoo Biol 34:46–52

    CAS  PubMed  Article  Google Scholar 

  • Valiente E, Tovar A, Gonzalez H et al (2010) Creating refuges for the Axolotl (Ambystoma mexicanum). Ecol Rest 28:257–259

    Article  Google Scholar 

  • Van Der Spuy SD, Krebs J (2008) Collaboration for amphibian conservation; the establishment of the Johannesburg Zoo amphibian conservation center in South Africa with assistance from Omahas’s Henry Doorly Zoo, USA. Int Zoo Yearb 42:165–171

    Article  Google Scholar 

  • Verschooren E, Brown RK, Vercammen F, Pereboom J (2011) Ultraviolet B radiation (UV-B) and the growth and skeletal development of the Amazonian milk frog (Trachycephalus resinifictrix) from metamorphis. J Physiol Pathophysiol 2:34–42

    Google Scholar 

  • Walker SF, Bosch J, James TY et al (2008) Invasive pathogens threaten species recovery programs. Curr Biol 18:853–854

    Article  CAS  Google Scholar 

  • Warkentin I, Bickford D, Sodhi N, Bradshaw C (2009) Eating frogs into extinction. Conserv Biol 23:1056–1059

    PubMed  Article  Google Scholar 

  • Wedekind C (2002) Sexual selection and life-history decisions: implications for supportive breeding and the management of captive populations. Conserv Biol 16:1204–1211

    Article  Google Scholar 

  • Williams SE, Hoffman EA (2009) Minimizing genetic adaptation in captive breeding programmes: a review. Biol Conserv 142:2388–2400

    Article  Google Scholar 

  • Williams DR, Pople RG, Showler DA et al (2012) Bird conservation: global evidence for the effects of interventions. Pelagic Publishing, Exeter

    Google Scholar 

  • Wilson EO (1984) Biophilia. Harvard University Press, Cambridge and Massachusetts

    Google Scholar 

  • Witzenberger KA, Hochkirch A (2011) Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv 20:1843–1861

    Article  Google Scholar 

  • Woodhams DC, Bosch J, Briggs CJ et al (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8:1–23

    Article  Google Scholar 

  • Wright KM, Whitaker BR (2001) Amphibian medicine and captive husbandry. Krieger Publishing Company, Malabar

    Google Scholar 

  • Zippel KC, Mendelson III Jr (2008) The amphibian extinction crisis: a call to action. Herpetol Rev 39:23–29

    Google Scholar 

  • Zippel K, Johnson K, Gagliardo R et al (2011) The amphibian ark: a global community for ex situ conservation of amphibians. Herpetol Conserv Biol 6:340–352

    Google Scholar 

Download references

Acknowledgments

We are grateful to Richard Griffiths, Kevin Johnson and Mark Habben for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Tapley.

Additional information

Communicated by Karen E. Hodges.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tapley, B., Bradfield, K.S., Michaels, C. et al. Amphibians and conservation breeding programmes: do all threatened amphibians belong on the ark?. Biodivers Conserv 24, 2625–2646 (2015). https://doi.org/10.1007/s10531-015-0966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0966-9

Keywords

  • Capacity building
  • Captive breeding
  • Husbandry
  • Zoo