Biodiversity and Conservation

, Volume 24, Issue 11, pp 2769–2788 | Cite as

Struggling to maintain native plant diversity in a peri-urban reserve surrounded by a highly anthropogenic matrix

  • Steffi HeinrichsEmail author
  • Aníbal Pauchard
Original Paper


High human density and land use intensity often coincide with biodiversity hotspots making peri-urban reserves a keystone for conserving natural remnants in a highly anthropogenic matrix. Particularly, intense propagule pressure by alien plant species can pose a threat to native biodiversity. However, little is known about the factors that determine invasibility and the role of roads and other human disturbances for such small protected areas. Within a peri-urban reserve close to the city of Concepción, south-central Chile, we investigated the influence of different site and landscape characteristics on the richness of native and alien plant species across different habitat (ruderal, road and forest sites) and forest types (native and alien dominated forests). Compared to other protected areas, alien species were frequently found in this reserve indicating the importance of urban areas as source for alien species. Aliens concentrate around disturbed ruderal and road sites, facilitating their spread into the reserve. Natural forest areas are less invaded until now. Within forests alien plant species richness was, however, positively associated to the proximity to disturbed landscapes. Forests dominated by alien tree species within the reserve are not the source for alien species within natural forests, but they negatively affect native species richness by replacing adequate seed sources. In order to prevent a further spread of alien species into peri-urban reserves, large scale anthropogenic disturbances should be minimized, already invaded sites must be monitored and buffer-zones protecting reserves from surrounding land use activities should be established.


Alien species Road Protected area Landscape Forest plantation Recreational use Chile 



We thank the Bauer Foundation (Bauer Stiftung zur Förderung von Wissenschaft und Forschung) within the Stifterverband für die Deutsche Wissenschaft for funding our research. A. Pauchard was funded by the Ministry of Economy grant ICM P05-002 and the CONICYT grant PFB-23. We are further grateful to Cristian Echeverría and his Lab of Landscape Ecology of the University of Concepción for providing the GIS layers of the Nonguén reserve, to Burkhard Müller-Using and the administration of the reserve for help with logistics, to Alejandra Jiminéz and Víctor Finot for help with species identification, and to Peter White and two anonymous reviewers for helpful comments to improve the manuscript.

Supplementary material

10531_2015_964_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1141 kb)


  1. Abelleira-Martínez OJ (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64CrossRefGoogle Scholar
  2. Aguayo M, Pauchard A, Azócar G, Parra O (2009) Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX. Entendiendo la dinámica especial y temporal del paisaje. Rev Chil Hist Nat 82:361–374CrossRefGoogle Scholar
  3. Aikio S, Duncan RP, Hulme PE (2012) The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Global Ecol Biogeogr 21:778–786CrossRefGoogle Scholar
  4. Allen JA, Brown CS, Stohlgren TJ (2009) Non-native plant invasions of United States National Parks. Biol Invasions 11:2195–2207CrossRefGoogle Scholar
  5. Amigo J, Ramírez C (1998) A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol 136:9–26CrossRefGoogle Scholar
  6. Armesto JJ, Rozzi R, Smith-Ramírez C, Arroyo MTK (1998) Conservation targets in South American temperate forests. Science 282:1271–1272CrossRefGoogle Scholar
  7. Arroyo MTK, Marticorena C, Matthei O, Cavieres L (2000) Plant invasions in Chile: present patterns and future predictions. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, DC, pp 385–421Google Scholar
  8. Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371CrossRefGoogle Scholar
  9. Becerra PI, Montenegro G (2013) The widely invasive tree Pinus radiata facilitates regeneration of native woody species in semi-arid ecosystems. Appl Veg Sci 16:173–183CrossRefGoogle Scholar
  10. Borgström S, Cousins SAO, Lindborg R (2012) Outside the boundary—land use changes in the surroundings of urban nature reserves. Appl Geogr 32:350–359CrossRefGoogle Scholar
  11. Bossdorf O, Auge H, Lafuma L, Rogers WE, Sieman E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11CrossRefPubMedGoogle Scholar
  12. Botham MS, Rothery P, Hulme PE, Hill MO, Preston CD, Roy DB (2009) Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers Distrib 15:338–345CrossRefGoogle Scholar
  13. Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde, 2nd edn. Springer, WienCrossRefGoogle Scholar
  14. Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915CrossRefGoogle Scholar
  15. Carmona A, González ME, Nahuelhual L, Silva J (2012) Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Bosque 33:321–328CrossRefGoogle Scholar
  16. Casanova M, Salazar O, Seguel O, Luzio W (2013) The soils of Chile. Springer, DordrechtCrossRefGoogle Scholar
  17. Castillo Fontannaz C (2001) Estadísticas climatologia. Dirección meterologica de Chile. Accessed 11 May 2015
  18. Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458CrossRefGoogle Scholar
  19. Cincotta RP, Engelman R (2000) Nature’s place—human population and the future of biological diversity. Population Action International, Washington, DCGoogle Scholar
  20. CONAF (2013) Estadísticas históricas incendios forestales. Corporación Nacional Forestal Chile. Accessed 11 May 2015
  21. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  22. Ellenberg H, Weber HE, Düll R, With V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–262Google Scholar
  23. Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Sendstad M, Schewenius M, Seto KC, Wilkinson C (eds) (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, DordrechtGoogle Scholar
  24. Figueroa JA, Teillier S, Castro SA (2011) Diversity patterns and composition of native and exotic floras in central Chile. Acta Oecol 37:103–109CrossRefGoogle Scholar
  25. Fuentes N, Pauchard A, Sánchez P, Esquivel J, Marticorena A (2013) A new comprehensive database of alien plant species in Chile based on herbarium records. Biol Invasions 15:847–858CrossRefGoogle Scholar
  26. Fuentes-Ramírez A, Pauchard A, Marticorena A, Sánchez P (2010) Relación entre la invasion de Acacia dealbata Link (Fabaceae: Mimosoideae) y la riqueza de species vegetales en el centro-sur de Chile. Gayana Bot 67:188–197CrossRefGoogle Scholar
  27. Fuentes-Ramírez A, Pauchard A, Cavieres LA, Carcía RA (2011) Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. For Ecol Manag 261:1003–1009CrossRefGoogle Scholar
  28. Furey C, Tecco PA, Perez-Harguindeguy N, Giorgis MA, Grossi M (2014) The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecol 54:13–20CrossRefGoogle Scholar
  29. Gaertner M, Breeyen AD, Hui C, Richardson DM (2009) Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geog 33:319–338CrossRefGoogle Scholar
  30. Gajardo R (1994) La vegetación natural de Chile. Clasificación y distribución geográfica. Editorial Universitaria, SantiagoGoogle Scholar
  31. García RA, Pauchard A, Cavieres LA, Peña E, Rodriguez MF (2010) El fuego favorece la invasión de Teline monspessulana (Fabacea) al aumentar su germinación. Rev Chil Hist Nat 83:443–452CrossRefGoogle Scholar
  32. García RA, Engler ML, Peña E, Pollnac FW, Pauschard A (2015) Fuel characteristics of the invasive shrub Teline monspessulana (L.) K. Koch. Int J Wildland Fire. doi: 10.1071/WF13078 Google Scholar
  33. Godoy O, Saldaña A, Fuentes N, Valladares F, Gianoli E (2011) Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen forest. Biol Invasions 13:1615–1625CrossRefGoogle Scholar
  34. Golivets M (2014) Ecological and biological determination of invasion success of non-native plant species in urban woodlands with special regard to short-lived monocarps. Urban Ecosyst 17:291–303CrossRefGoogle Scholar
  35. Gómez-González S, Cavieres LA (2009) Litter burning does not equally affect seedling emergence of native and alien species of the Mediterranean-type Chilean matorral. Int J Wildland Fire 18:213–221CrossRefGoogle Scholar
  36. González-Moreno P, Delgado JD, Vilà M (2015) Una vision a escala de paisaje de las invasiones biológicas. Ecosistemas 24:84–92CrossRefGoogle Scholar
  37. González-Muñoz N, Costa-Tenorio M, Espigares T (2012) Invasion of alien Acacia dealbata on Spanish Quercus robur forests: impact on soils and vegetation. For Ecol Manag 269:214–221CrossRefGoogle Scholar
  38. Gordon A, Simondson D, White M, Moilanen A, Dekessy SA (2009) Integrating conservation planning and landuse planning in urban landscapes. Landsc Urban Plan 91:183–194CrossRefGoogle Scholar
  39. Habit E, Victoriano P, Rodríguez-Ruiz A (2003) Variaciones espacio-temporales del ensamble de peces de un sistema fluvial de bajo orden del centro-sur de Chile. Rev Chil Hist Nat 76:3–14CrossRefGoogle Scholar
  40. Hechenleitner P, Gardner MF, Thomas PI, Echeverría C, Escobar B, Brownless P, Martínez C (2005) Plantas Amenazadas del Centro-Sur de Chile. Distribución, Conservación y Propagación. 1st ed. Universidad Austral de Chile y Real Jardín Botánico de EdimburgoGoogle Scholar
  41. Hedblom M, Söderström B (2010) Landscape effects on birds in urban woodlands: an analysis of 34 Swedish cities. J Biogeogr 37:1302–1316CrossRefGoogle Scholar
  42. Hulme PE, Pyšek P, Pergl J, Jarošik V, Schaffner U, Vilà M (2014) Greater focus needed on alien plant impacts in protected areas. Conserv Lett 7:459–466CrossRefGoogle Scholar
  43. Jarošík V, Pyšek P, Kadlec T (2011) Alien plants in urban nature reserves: from red-list species to future invaders? NeoBiota 10:27–46CrossRefGoogle Scholar
  44. Jiménez A, Pauchard A, Marticorena A, Bustamante RO (2013) Patrones de distribución de plantas introducidas en areas silvestres protegidas y sus areas adyacentes del centro-sur de Chile. Gayana Bot 70:110–120CrossRefGoogle Scholar
  45. Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983CrossRefPubMedGoogle Scholar
  46. Le Maitre DC, Gaertner M, Marchante E, Ens E-J, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17:1015–1029CrossRefGoogle Scholar
  47. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, SantiagoGoogle Scholar
  48. Lusk CH, Donoso C, Jiménez M, Moya C, Oyarce G, Reinso R, Saldaña A, Villegas P, Matus F (2001) Decomposición de hojarasca de Pinus radiata y tres species arbóreas nativas. Rev Chil Hist Nat 74:705–710Google Scholar
  49. Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149CrossRefGoogle Scholar
  50. Mascaro J, Becklund KK, Hughes RF, Schnitzer SA (2008) Limited native plant regeneration in novel, exotic-dominated forests on Hawaii. For Ecol Manag 256:593–606CrossRefGoogle Scholar
  51. Maskell LC, Bullock JM, Smart SM, Thompson K, Hulme PE (2006) The distribution and habitat associations of non-native plant species in urban riparian habitats. J Veg Sci 17:499–508CrossRefGoogle Scholar
  52. Matthei O (1995) Manual de las malezas que crecen en Chile. Alfabeta Impresores, SantiagoGoogle Scholar
  53. McCune B, Dylan K (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606CrossRefGoogle Scholar
  54. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  55. McDonald RI, Forman RTT, Kareiva P, Neugarten R, Salzer D, Fisher J (2009) Urban effects, distance, and protected areas in an urbanizing world. Landsc Urban Plan 93:63–75CrossRefGoogle Scholar
  56. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 15:883–890CrossRefGoogle Scholar
  57. Merritt DM, Wohl EE (2006) Plant dispersal along rivers fragmented by dams. River Res Appl 22:1–26CrossRefGoogle Scholar
  58. Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16:330–337CrossRefGoogle Scholar
  59. Moreira-Arce D, de la Barrera F, Bustamante RO (2015) Distance to suburban/wildland border interacts with habitat type for structuring exotic plant communities in a natural area surrounding a metropolitan area in central Chile. Plant Ecol Divers 8:363–370. doi: 10.1080/17550874.2014.983201 CrossRefGoogle Scholar
  60. Muñoz Schick M (1980) Flora del Parque National Puyehue. Editorial Universitaria, SantiagoGoogle Scholar
  61. Myers N (1990) The biodiversity challenge: expanded Hot-Spots analysis. Environmentalist 10:243–256CrossRefPubMedGoogle Scholar
  62. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  63. Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in H.J. Andrews Experimental Forest, Oregon. Conserv Biol 14:64–75CrossRefGoogle Scholar
  64. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18:238–248CrossRefGoogle Scholar
  65. Pauchard A, Ugarte E, Millán J (2000) A multiscale method for assessing vegetation baseline of environmental impact assessment (EIA) in protected areas of Chile. In: McCool SF, Cole DN, Borrie WT, O’Loughlin J (eds) Conference on wilderness science in a time of change. 3. Wilderness as a place for scientific inquiry. Proceedings RMRS-P-15-Vol 3. U.S. Forest Service, Rocky Mountain Research Station, OgdenGoogle Scholar
  66. Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol Conserv 127:272–281CrossRefGoogle Scholar
  67. Pliscoff P, Fuentes-Castillo T (2011) Representativeness of terrestrial ecosystems in Chile’s protected area system. Environ Conserv 38:303–311CrossRefGoogle Scholar
  68. Pryor DD (2010) Analysis of light environments under forest canopies using an integrated digital hemispherical image system. Dissertation, Staffordshire UniversityGoogle Scholar
  69. Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 332–355Google Scholar
  70. Ricklefs RE, Guo Q, Qian H (2008) Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America. Divers Distrib 14:381–386CrossRefGoogle Scholar
  71. Rivas Y, Oyarzún C, Godoy R, Valenzuela E (2009) Mineralización del nitrógeno, carbon y actividad enzimática del suelo en un bosque de Nothofagus obliqua (Mirb) Oerst y una plantación de Pinus radiata D. Don del centro-sur de Chile. Rev Chil Hist Nat 82:119–134CrossRefGoogle Scholar
  72. Ross CA, Faust D, Auge H (2009) Mahonia invasions in different habitats: local adaptation or general –purpose genotypes? Biol Invasions 11:441–452CrossRefGoogle Scholar
  73. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  74. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904CrossRefGoogle Scholar
  75. Silva-Rodríguez EA, Verdugo C, Aleuy OA, Sanderson JG, Ortega-Solís GR, Osorio-Zúñiga F, González-Acuña D (2010) Evaluating mortality sources for the vulnerable pudu Pudu puda in Chile: implication for the conservation of a threatened deer. Oryx 44:97–103CrossRefGoogle Scholar
  76. Simonetti JA (1994) Threatened biodiversity as an environmental problem in Chile. Rev Chil Hist Nat 67:315–319Google Scholar
  77. Smith-Ramírez C (2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodivers Conserv 13:373–393CrossRefGoogle Scholar
  78. Snep RPH, Opdam PFM, Baveco JM, Wallis DeVries MF, Timmermans W, Kawak RGM, Kuypers V (2006) How peri-urban areas can strengthen animal populations within cities: a modeling approach. Biol Conserv 127:345–355CrossRefGoogle Scholar
  79. Soto-Azat C, Valenzuela-Sánchez A, Collen B, Rowcliffe JM, Veloso A, Cunningham AA (2013) The population decline and extinction of Darwin’s Frogs. PLoS One 8:e66957. doi: 10.1371/journal.pone.0066957 PubMedCentralCrossRefPubMedGoogle Scholar
  80. Spear D, Foxcroft LC, Bezuidenhout H, McGeoch MM (2013) Human population density explains alien species richness in protected areas. Biol Conserv 159:137–147CrossRefGoogle Scholar
  81. Spence LA, Ross JV, Wiser SK, Allen RB, Coomes DA (2011) Disturbance affects short-term facilitation, but not long-term saturation, of exotic plant invasion in New Zealand forest. Proc R Soc B 278:1457–1466PubMedCentralCrossRefPubMedGoogle Scholar
  82. Tomasetto F, Duncan RP, Hulme PE (2013) Environmental gradients shift the direction of the relationship between native and alien plant species richness. Divers Distrib 19:49–59CrossRefGoogle Scholar
  83. Vicente JR, Pereira HM, Randin CF, Gonҫalves J, Llomba A, Alves P, Metzger J, Cezar M, Guisan A, Honrado J (2014) Environment and dispersal paths override life strategies and residence time in determining regional patterns of invasion by alien plants. Perspect Plant Ecol 16:1–10CrossRefGoogle Scholar
  84. Watkins RZ, Chen J, Pickens J, Brosofske KD (2002) Effects of forest roads on understory plants in a managed hardwood landscape. Conserv Biol 17:411–419CrossRefGoogle Scholar
  85. Yang L, Liu N, Rain H, Wang J (2009) Facilitation by exotic Acacia: Acacia auriculiformis, Acacia mangium as nurse plants in South China. For Ecol Manag 257:1786–1793CrossRefGoogle Scholar
  86. Zuloaga FO, Morrone O, Belgrano M (2008) Catálogo de las plantas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay) Volumen I, II, III. Monogr Syst Bot 107, Mo Bot Gard Press, St. LouisGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department Silviculture and Forest Ecology of the Temperate ZoneGeorg-August-University GöttingenGöttingenGermany
  2. 2.Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  3. 3.Institute of Ecology and Biodiversity (IEB)SantiagoChile

Personalised recommendations