Skip to main content

Advertisement

Log in

Assessing the biodiversity value of wet grasslands: can selected plant and insect taxa be used as rapid indicators of species richness at a local scale?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Sixty percent of the land surface of the Republic of Ireland is farmland of which up to 12 % is estimated to sustain high species richness. Given that this farmland is predominantly pasture-based, the ecological status of semi-natural grasslands is particularly important for biodiversity. Recent studies indicate that those grasslands with high nature value (HNV) in the north-west of Ireland are wet grasslands. We investigated seven taxa as potential bioindicators of species richness of wet grassland habitats and examined how this information could be used in rapid assessment methodologies to identify areas of HNV. Grasses, sedges, rushes, ground beetles (Coleoptera) and marsh flies (Diptera) were identified to species and Diptera to parataxonomic units. Sedges was the most significantly correlated taxon with overall species richness of the remaining taxa. In addition, ten combinations of taxa revealed significant positive correlations with the remaining species richness of which sedges and carabids combined showed the strongest correlation. Our data indicate the appropriateness of using more than one taxon in rigorous studies to reflect the overall species richness of wet grasslands. Nevertheless, the use of a single taxon or a combination of two taxa has a useful role to play in the rapid identification, protection and future monitoring of species-rich wet grasslands where taxonomic and financial resources for rigorous studies are limited. We discuss this in the context of agri-environmental schemes and HNV farmland identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkemade R (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12(3):374–390

    Article  Google Scholar 

  • Allen CR, Pearlstine LG, Wojcik DP, Kitchens WM (2001) The spatial distribution of diversity between disparate taxa: spatial correspondence between mammals and ants across South Florida, USA. Landsc Ecol 16:453–464

    Article  Google Scholar 

  • Avgin SS, Luff ML (2010) Ground beetles (Coleoptera: Carabidae) as bioindicators of human impact. Mun Entomol Zool 5:209–215

    Google Scholar 

  • Beaufoy G, Marsden K (2013) CAP reform 2013 last chance to stop the decline of Europe’s high nature value farming?

  • Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150. doi:10.1111/j.1365-2664.2007.01393.x

    Article  Google Scholar 

  • Budelsky RA, Galatowitsch SM (2000) Effects of water regime and competition on the establishment of a native sedge in restored wetlands. J Nat Conserv 37:971–985

    Google Scholar 

  • Burgio G, Sommaggio D (2007) Syrphids as landscape bioindicators in Italian agroecosystems. Agric Ecosyst Environ 120:416–422

    Article  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655. doi:10.1016/j.biocon.2011.07.024

    Article  Google Scholar 

  • Chiarucci A, D’auria F, Bonini I (2007) Is vascular plant species diversity a predictor of bryophyte species diversity in Mediterranean forests? Biodivers Conserv 16:525–545

    Article  Google Scholar 

  • Colreavy M (2012a) Committee Debates. CAP Reform: discussion with EU Commissioner Dacian Ciolos 1–3

  • Colreavy M (2012b) Committee Debates. Reform of common Agricultural Policy: discussion with Irish Cattle and Sheep Farmers Association 1–3

  • Da Silva PM, Aguiar CAS, Niemelä J et al (2008) Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land-use disturbance. Agric Ecosyst Environ 124:270–274

    Article  Google Scholar 

  • Dollar JG, Riffell S, Adams HL, Wes Burger Jr L (2014) Evaluating butterflies as surrogates for birds and plants in semi-natural grassland buffers. J Insect Conserv 18:171–178. doi:10.1007/s10841-014-9626-8

  • Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • Duelli P, Orbist MK (1998) In search of the best correlates for local organismal diversity in cultivated areas. Biodivers Conserv 7:297–309

    Article  Google Scholar 

  • Edgell SE, Noon SM (1984) Effect of violation of normality on the t test of the correlation coefficient. Psychol Bull 95:576–583. doi:10.1037//0033-2909.95.3.576

    Article  Google Scholar 

  • Eurinco (2011) CAP reform post 2013—a summary of the commission proposals 1–12

  • European Environment Agency (2009) High nature value farmland in Europe. http://www.eea.europa.eu/data-and-maps/figures/hig. Accessed 6 Jun 2014

  • Ferreira S, Daemane M, Deacon A et al (2013) Efficient evaluation of biodiversity concerns in protected areas. Int J Biodivers 2013:1–12. doi:10.1155/2013/298968

    Article  Google Scholar 

  • Finch O-D, Löffler J (2010) Indicators of species richness at the local scale in an alpine region: a comparative approach between plant and invertebrate taxa. Biodivers Conserv 19:1341–1352. doi:10.1007/s10531-009-9765-5

    Article  Google Scholar 

  • Fleishman E, Noss RF, Noon BR (2006) Utility and limitations of species richness metrics for conservation planning. Ecol Indic 6:543–553. doi:10.1016/j.ecolind.2005.07.005

    Article  Google Scholar 

  • Forsythe T (1987) Common ground beetles naturalist’s handbook 8. Richmond Richmond Publishing, Oxford, pp 1–72

    Google Scholar 

  • Fossitt JA (2000) A guide to habitats in Ireland 1–114

  • Frouz J (1999) Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance. Agric Ecosyst Environ 74:167–186

    Article  Google Scholar 

  • Gaston KJ, Williams PH (1993) Mapping the worlds species-the higher taxon approach. Biodivers Lett 1:2–8

    Article  Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850. doi:10.1007/s10841-013-9565-9

    Article  Google Scholar 

  • González-Oreja JA, Garbisu C, Mijangos I et al (2013) Author’s personal copy Reducing costs in biodiversity monitoring: shortcuts for plant diversity in meadows as a case study. Ecol Indic 24:96–104

    Article  Google Scholar 

  • Grelle CEV (2002) Is higher-taxon analysis an useful surrogate of species richness in studies of Neotropical mammal diversity? Biol Conserv 108:101–106. doi:10.1016/S0006-3207(02)00094-0

    Article  Google Scholar 

  • Habel JC, Dengler J, Janišová M et al (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138. doi:10.1007/s10531-013-0537-x

    Article  Google Scholar 

  • Heckathorn DD (2002) Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Soc Probl 49:11–34

    Article  Google Scholar 

  • Heino J, Tolonen KT, Kotanen J, Paasivirta L (2009) Indicator groups and congruence of assemblage similarity, species richness and environmental relationships in littoral macroinvertebrates. Biodivers Conserv 18:3085–3098. doi:10.1007/s10531-009-9626-2

    Article  Google Scholar 

  • Hess GR, Bartel RA, Leidner AK et al (2006) Effectiveness of biodiversity indicators varies with extent, grain, and region. Biol Conserv 132:448–457. doi:10.1016/j.biocon.2006.04.037

    Article  Google Scholar 

  • Janzen DH, Shoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49:96–101. doi:10.1086/283462

    Article  Google Scholar 

  • Keiper JB, Walton WE, Foote BA (2002) Biology and ecology of higher Diptera from freshwater wetlands. Annu Entomol 47:207–232

    Article  CAS  Google Scholar 

  • Koch B, Edwards PJ, Blanckenhorn WU et al (2013) Vascular plants as surrogates of butterfly and grasshopper diversity on two Swiss subalpine summer pastures. Biodivers Conserv 22:1451–1465. doi:10.1007/s10531-013-0485-5

    Article  Google Scholar 

  • Kremen C (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2:203–217

    Article  Google Scholar 

  • Lawton JH, Bignell DE, Bolton B et al (1998) Biodiversity inventories, indicator taxa and effects of habitat modification. Nature 391:72–76

    Article  CAS  Google Scholar 

  • Lovell S, Hamer M, Slotow R, Herbert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125. doi:10.1016/j.biocon.2007.06.008

    Article  Google Scholar 

  • Luff ML (2007) Carabidae (ground beetles) of Britain and Ireland, 2nd edn 1–247

  • Lumbreras A, Pardo C, Molina JA (2013) Bioindicator role of aquatic Ranunculus in Mediterranean freshwater habitats. Aquat Conserv Mar Freshw Ecosyst 23:582–593. doi:10.1002/aqc.2327

    Article  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Camb Philos Soc 73:181–201. doi:10.1017/S000632319700515X

    Article  Google Scholar 

  • Moran J, Gormally M, Sheehy Skeffington M (2012) Turlough ground beetle communities: the influence of hydrology and grazing in a complex ecological matrix. J Insect Conserv 16:51–69. doi:10.1007/s10841-011-9393-8

    Article  Google Scholar 

  • Moreno CE, Sánchez-rojas G, Pineda E, Escobar F (2007) Shortcuts for biodiversity evaluation: a review of terminology and recommendations for the use of target groups, bioindicators and surrogates. Int J Environ Heal 1:71–86

    Article  Google Scholar 

  • O’Neill FH, Martin JR, Devaney FM, Perrin PM (2013) The Irish semi-natural grasslands survey 2007–2012 Irish Wilflife Manuals No 78

  • Oertli S, Muller A, Steiner D, Breitenstein SD (2005) Cross-taxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape. Biol Conserv 126:195–205

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Article  Google Scholar 

  • Pearman PB, Weber D (2007) Common species determine richness patterns in biodiversity indicator taxa. Biol Conserv 138:109–119. doi:10.1016/j.biocon.2007.04.005

    Article  Google Scholar 

  • Pearson DL, Carroll SS (2001) The influence of spatial scale on cross-taxon congruence patterns and prediction accuracy of species richness. J Biogeogr 26:1079–1090

    Article  Google Scholar 

  • Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98:169–181. doi:10.1016/S0167-8809(03)00079-3

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ, Binns D (1999) Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conserv Biol 13:282–292

    Article  Google Scholar 

  • Pollet M (2001) Dolichopodid biodiversity and site quality assessment of reed marshes and grasslands in Belgium (Diptera: Dolichopodidae). J Insect Conserv 5:99–116

    Article  Google Scholar 

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506

    Article  Google Scholar 

  • Rozkošný R (1987) A review of the palaertic Sciomyzidae/Diptera. Univerzita JE Purkyné v Brné

  • Santi E, Maccherini S, Rocchini D et al (2010) Simple to sample: vascular plants as surrogate group in a nature reserve. J Nat Conserv 18:2–11. doi:10.1016/j.jnc.2009.02.003

    Article  Google Scholar 

  • Sauberer N (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117:181–190. doi:10.1016/S0006-3207(03)00291-X

    Article  Google Scholar 

  • Sullivan CA, Skeffington MS, Gormally MJ, Finn JA (2010) The ecological status of grasslands on lowland farmlands in western Ireland and implications for grassland classification and nature value assessment. Biol Conserv 143:1529–1539. doi:10.1016/j.biocon.2010.03.035

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Article  CAS  PubMed  Google Scholar 

  • Toogood SE, Joyce CB (2009) Effects of raised water levels on wet grassland plant communities. Appl Veg Sci 12:283–294

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity -“ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Unwin DM (1984) A key to the families of British Diptera. Field Studies Council, 1984

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect ? Systematics and the agony of choice. Biol Conserv 55:235–254

    Article  Google Scholar 

  • Vera P, Sasa M, Encabo SI et al (2011) Land use and biodiversity congruences at local scale: applications to conservation strategies. Biodivers Conserv 20:1287–1317. doi:10.1007/s10531-011-0028-x

    Article  Google Scholar 

  • Vessby K, Söderström B, Glimskär A, Svensson B (2002) Species-richness correlations of six different taxa in swedish seminatural grasslands. Conserv Biol 16:430–439. doi:10.1046/j.1523-1739.2002.00198.x

    Article  Google Scholar 

  • Williams CD, Moran J, Doherty O et al (2007) Factors affecting Sciomyzidae (Diptera) across a transect at Skealoghan Turlough (Co. Mayo, Ireland). Aquat Ecol 43:117–133. doi:10.1007/s10452-007-9149-4

    Article  Google Scholar 

  • Wolters V, Bengtsson J, Zaitsev AS (2006) Relationship among the species richness of different taxa. Ecology 87:1886–1895

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the farmers that participated in this study and their agricultural advisors for their help in sourcing sample farms for all their time and attention. This project was funded by Irish Research Council and President’s Bursary, IT Sligo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Hayes.

Additional information

Communicated by P. Ponel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, M., Boyle, P., Moran, J. et al. Assessing the biodiversity value of wet grasslands: can selected plant and insect taxa be used as rapid indicators of species richness at a local scale?. Biodivers Conserv 24, 2535–2549 (2015). https://doi.org/10.1007/s10531-015-0942-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0942-4

Keywords

Navigation