Skip to main content
Log in

Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Polar Regions (continental Antarctica and the Arctic) are characterized by a range of extreme environmental conditions, which impose severe pressures on biological life. Polar cold-active cyanobacteria are uniquely adapted to withstand the environmental conditions of the high latitudes. These adaptations include high ultra-violet radiation and desiccation tolerance, and mechanisms to protect cells from freeze–thaw damage. As the most widely distributed photoautotrophs in these regions, cyanobacteria are likely the dominant contributors of critically essential ecosystem services, particularly carbon and nitrogen turnover in terrestrial polar habitats. These habitats include soils, permafrost, cryptic niches (including biological soil crusts, hypoliths and endoliths), ice and snow, and a range of aquatic habitats. Here we review current literature on the ecology, and the functional role played by cyanobacteria in various Arctic and Antarctic environments. We focus on the ecological importance of cyanobacterial communities in Polar Regions and assess what is known regarding the toxins they produce. We also review the responses and adaptations of cyanobacteria to extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adriaenssens EM, Guerrero LD, Makhalanyan TP, Aislabie JM, Cowan DA (2014) Draft genome sequence of the aromatic hydrocarbon-degrading bacterium Sphingobium sp. Strain Ant17, isolated from Antarctic soil. Genom Announc. doi:10.1128/genomeA.00212-14

    Google Scholar 

  • Agawin NS, Agusti S (1997) Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwest Mediterranean Sea. J Plankton Res 19:1599–1615

    Google Scholar 

  • Aislabie JM, Chhour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056. doi:10.1016/j.soilbio.2006.02.018

    CAS  Google Scholar 

  • Aislabie J, Jordan S, Barker G (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    CAS  Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576. doi:10.1111/j.1462-2920.2008.01809.x

    CAS  PubMed  Google Scholar 

  • Bahl J et al (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi:10.1038/ncomms1167

    PubMed Central  PubMed  Google Scholar 

  • Bakermans C, Skidmore ML, Douglas S, McKay CP (2014) Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 89(2):331–346

    CAS  PubMed  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. West N Am Nat 53:40–47

    Google Scholar 

  • Belnap J, Lange OL (2002) Biological soil crusts: structure, function, and management; with 30 tables, vol 150. Springer, Berlin

    Google Scholar 

  • Benhua S et al (2014) Biogeochemical responses to nutrient, moisture and temperature manipulations of soil from Signy Island, South Orkney Islands in the Maritime Antarctic. Antarct Sci 26(5):513–520

    Google Scholar 

  • Blanco Y et al (2012) Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). Environ Microbiol 14:2495–2510. doi:10.1111/j.1462-2920.2012.02767.x

    CAS  PubMed  Google Scholar 

  • Bockheim JG, McLeod M (2008) Soil distribution in the McMurdo Dry Valleys, Antarctica. Geoderma 144:43–49

    Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130

    CAS  Google Scholar 

  • Bottos EM, Vincent WF, Greer CW, Whyte LG (2008) Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 10:950–966

    CAS  PubMed  Google Scholar 

  • Bowker MA, Maestre FT, Eldridge D, Belnap J, Castillo-Monroy A, Escolar C, Soliveres S (2014) Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–1637

    Google Scholar 

  • Büdel B, Colesie C (2014) Biological soil crusts. Antarctic terrestrial microbiology. Springer, Berlin, pp 131–161

    Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Allan Green T (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Google Scholar 

  • Büdel B et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23(7):1619–1637

    Google Scholar 

  • Büdel B, Schulz B, Reichenberger H, Bicker F, Green T (2009) Cryptoendolithic cyanobacteria from calcite marble rock ridges, Taylor Valley, Antarctica. Algol Stud 129:61–69

    Google Scholar 

  • Busch A, Friedrich B, Cramm R (2002) Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 68:668–672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 82:254–267. doi:10.1111/j.1574-6941.2011.01277.x

    CAS  PubMed  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138. doi:10.1038/nrmicro2281

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1988) Culturing methods for cyanobacteria. Methods Enzymol 167:68–93

    CAS  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34

    CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming J (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res Part I 49:2163–2181

    CAS  Google Scholar 

  • Chan Y et al (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282. doi:10.1111/j.1462-2920.2012.02821.x

    PubMed  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic Dry Valley. Proc Natl Acad Sci. doi:10.1073/pnas.1300643110

    Google Scholar 

  • Cockell CS, Stokes MD (2004) Ecology: widespread colonization by polar hypoliths. Nature 431:414–414. http://www.nature.com/nature/journal/v431/n7007/suppinfo/431414a_S1.html

  • Cockell C, Rettberg P, Horneck G, Scherer K, Stokes DM (2003) Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol 26:62–69

    Google Scholar 

  • Convey P et al (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244. doi:10.1890/12-2216.1

    Google Scholar 

  • Cowan DA, Ah Tow LA (2004) Endangered antarctic environments. Annu Rev Microbiol 58:649–690. doi:10.1146/annurev.micro.57.030502.090811

    CAS  PubMed  Google Scholar 

  • Cowan DA, Khan N, Pointing SB, Cary SC (2010) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720. doi:10.1017/s0954102010000507

    Google Scholar 

  • Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TGA, Cary SC, Tuffin IM (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586. doi:10.1111/j.1758-2229.2011.00266.x

    CAS  PubMed  Google Scholar 

  • Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154. doi:10.3389/fmicb.2014.00154

    PubMed Central  PubMed  Google Scholar 

  • Curtis T (2006) Microbial ecologists: it’s time to’go large’. Nat Rev Microbiol 4:488

    CAS  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    PubMed Central  PubMed  Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867. doi:10.1128/aem.69.7.3858-3867.2003

    PubMed Central  PubMed  Google Scholar 

  • de los Rios A, Wierzchos J, Sancho LG, Ascaso C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50:143–152. doi:10.1016/j.femsec.2004.06.010

    PubMed  Google Scholar 

  • de los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190

    Google Scholar 

  • de los Rios A, Cary C, Cowan D (2014) The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol. doi:10.1007/s00300-014-1564-0

    Google Scholar 

  • Dennis PG, Newsham KK, Rushton SP, Ord VJ, O’Donnell AG, Hopkins DW (2013) Warming constrains bacterial community responses to nutrient inputs in a southern, but not northern, maritime Antarctic soil. Soil Biol Biochem 57:248–255. doi:10.1016/j.soilbio.2012.07.009

    CAS  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162

    CAS  Google Scholar 

  • Edwards A et al (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160. doi:10.1038/ismej.2010.100

    PubMed Central  PubMed  Google Scholar 

  • Escolar C, Martínez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc B 367:3087–3099

    Google Scholar 

  • Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164. doi:10.1111/ele.12206

    PubMed  Google Scholar 

  • Fernández A, Mouriño-Carballido B, Bode A, Varela M, Marañón E (2010) Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean. Biogeosci Discuss 7:2195–2225

    Google Scholar 

  • Fernández-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42:338–349

    PubMed  Google Scholar 

  • Ferreras ER, De Maayer P, Makhalanyane TP, Guerrero LD, Aislabie JM, Cowan DA (2014) Draft genome sequence of Microbacterium sp. strain CH12i, isolated from shallow groundwater in Cape Hallett, Antarctica. Genom Announc 2:e00789

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. doi:10.1073/pnas.0507535103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71. doi:10.1007/s00248-002-1007-2

    CAS  PubMed  Google Scholar 

  • Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley. Antarct J Geophys Res 2005–2012:112

    Google Scholar 

  • Frank-Fahle BA, Yergeau É, Greer CW, Lantuit H, Wagner D (2014) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS One 9:e84761

    PubMed Central  PubMed  Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert. Antarct Polarforschung 58:251–259

    CAS  Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Microbiology—Cyanobacteria track water in desert soils. Nature 413:380–381. doi:10.1038/35096640

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    CAS  PubMed  Google Scholar 

  • Gilichinsky D et al (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    CAS  PubMed  Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

    Google Scholar 

  • Guerrero LD, Makhalanyane TP, Aislabie JM, Cowan DA (2014) Draft Genome Sequence of Williamsia sp. Strain D3, Isolated From the Darwin Mountains, Antarctica. Genom Announc doi:10.1128/genomeA.01230-13

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243. doi:10.1128/AEM.02611-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins DW et al (2008) Enzymatic activities and microbial communities in an Antarctic dry valley soil: Responses to C and N supplementation. Soil Biol Biochem 40:2130–2136. doi:10.1016/j.soilbio.2008.03.022

    CAS  Google Scholar 

  • Hopkins DW et al (2009) Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environ Microbiol 11:597–608. doi:10.1111/j.1462-2920.2008.01830.x

    CAS  PubMed  Google Scholar 

  • Hopkins D, Newsham K, Dungait J (2014) Primary production and links to carbon cycling in Antarctic soils. Antarctic Terrestrial Microbiology. Springer, Berlin, pp 233–248

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565

    PubMed  Google Scholar 

  • Jansson JK, Taş N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 6:414–425

    CAS  PubMed  Google Scholar 

  • Jochimsen EM et al (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    CAS  PubMed  Google Scholar 

  • Johnson-Rollings AS et al (2014) Exploring the functional soil-microbe interface and exoenzymes through soil metaexoproteomics. ISME J. doi:10.1038/ismej.2014.130

    PubMed Central  PubMed  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529. doi:10.1111/j.1462-2920.2005.00717.x

    CAS  PubMed  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202. doi:10.1038/ismej.2009.113

    CAS  PubMed  Google Scholar 

  • Jungblut AD, Wood SA, Hawes I, Webster-Brown J, Harris C (2012) The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiol Ecol 82:356–366

    CAS  PubMed  Google Scholar 

  • Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407

    PubMed  Google Scholar 

  • Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB, Cowan D (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668. doi:10.1007/s00300-011-1061-7

    Google Scholar 

  • Kimble J (2004) Cryosols: permafrost-affected soils. Springer Science, Berlin

    Google Scholar 

  • Kleinteich J, Wood SA, Küpper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production Nature. Clim Change 2:356–360

    CAS  Google Scholar 

  • Kleinteich J et al (2014) Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarct Sci FirstView. doi:10.1017/S0954102014000145

    Google Scholar 

  • Koch C (2012) Modular biological complexity. Science 337:531–532

    CAS  PubMed  Google Scholar 

  • Komárek O, Komárek J (2010) Diversity and Ecology of Cyanobacterial Microflora of Antarctic Seepage Habitats: comparison of King George Island, Shetland Islands, and James Ross Island, NW Weddell Sea, Antarctica. Microbial Mats. Springer, Berlin, pp 515–539

    Google Scholar 

  • Komárek J, Elster J, Komárek O (2008) Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Google Scholar 

  • Larson CA, Passy SI (2013) Rates of species accumulation and taxonomic diversification during phototrophic biofilm development are controlled by both nutrient supply and current velocity. Appl Environ Microbiol 79:2054–2060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lauro FM et al (2010) An integrative study of a meromictic lake ecosystem in Antarctica. Isme J 5:879–895

    PubMed Central  PubMed  Google Scholar 

  • Laybourn-Parry J, Bell EM (2014) Ace Lake: three decades of research on a meromictic, Antarctic lake. Polar Biol 37:1685–1699

    Google Scholar 

  • Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6:1046–1057. doi:10.1038/ismej.2011.170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ling HU, Seppelt RD (1998) Non-marine algae and cyanobacteria of the Windmill Islands region, Antarctica with descriptions of two new species. Archiv für Hydrobiol 124:49–62

    Google Scholar 

  • Lizotte MP (2008) Phytoplankton and primary production Polar lakes and rivers. Oxford University Press, Oxford, pp 157–178

    Google Scholar 

  • Los D, Mironov K (2013) Membrane properties and cold stress responses in cyanobacteria and plants. FEBS Journal. Wiley, Hoboken, p 224

    Google Scholar 

  • Lyons WB, Leslie DL, Harmon RS, Neumann K, Welch KA, Bisson KM, McKnight DM (2013) The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Appl Geochem 32:26–36. doi:10.1016/j.apgeochem.2012.08.019

    CAS  Google Scholar 

  • Maestre FT et al (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Global Change Biol 19:3835–3847

    Google Scholar 

  • Makhalanyane TP, Valverde A, Birkeland N-K, Cary SC, Marla Tuffin I, Cowan DA (2013a) Evidence for successional development in Antarctic hypolithic bacterial communities. Isme J 7:2080–2090. doi:10.1038/ismej.2013.94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2013b) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224. doi:10.1111/1758-2229.12003

    PubMed  Google Scholar 

  • Makhalanyane TP, Pointing SB, Cowan DA (2014) Lithobionts: cryptic and refuge niches. In: Cowan DA (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 163–179

    Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. doi:10.1093/femsre/fuu011

    PubMed  Google Scholar 

  • Moreira C, Ramos V, Azevedo J, Vasconcelos V (2014) Methods to detect cyanobacteria and their toxins in the environment. Appl Microbiol Biotechnol 98:8073–8082

    CAS  PubMed  Google Scholar 

  • Mosier AC, Li Z, Thomas BC, Hettich RL, Pan C, Banfield JF (2014) Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. doi:10.1038/ismej.2014.113

    PubMed  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia Beiheft 123:173–198

    Google Scholar 

  • Nadeau TL, Castenholz RW (2000) Characterization of psychrophilic oscillatorians (cyanobacteria) from Antarctic meltwater ponds. J Phycol 36:914–923

    Google Scholar 

  • Namsaraev Z, Mano M-J, Fernandez R, Wilmotte A (2010) Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Ann Glaciol 51:171–177

    Google Scholar 

  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253

    CAS  PubMed  Google Scholar 

  • Ng C et al (2010) Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake. Antarctica Isme J 4:1002–1019. doi:10.1038/ismej.2010.28

    CAS  Google Scholar 

  • Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol (NY) 7:253–271. doi:10.1007/s10126-004-5118-2

    CAS  Google Scholar 

  • Niederberger TD, Sohm JA, Tirindelli J, Gunderson T, Capone DG, Carpenter EJ, Cary SC (2012) Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiol Ecol 82:376–390. doi:10.1111/j.1574-6941.2012.01390.x

    CAS  PubMed  Google Scholar 

  • Nienow J, Friedmann E, Ocampo-Friedmann R (2003) Endolithic microorganisms in arid regions. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York

    Google Scholar 

  • Novis PM et al (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Global Change Biol 13:1224–1237

    Google Scholar 

  • Oppenheim DR, Paterson DM (1990) The fine structure of an algal mat from a freshwater maritime Antarctic lake. Can J Bot 68:174–183

    Google Scholar 

  • Oren A (2011) Cyanobacterial systematics and nomenclature as featured in the international bulletin of bacteriological nomenclature and taxonomy/international journal of systematic bacteriology/international journal of systematic and evolutionary microbiology. Int J Syst Evol Microbiol 61:10–15

    PubMed  Google Scholar 

  • Oren A (2014) Cyanobacteria: biology, ecology and evolution cyanobacteria: an economic perspective. Bioinformatics 20:1453–1454

    Google Scholar 

  • Otero X, Fernandez S, de Pablo Hernandez M, Nizoli E, Quesada A (2013) Plant communities as a key factor in biogeochemical processes involving micronutrients (Fe, Mn Co, and Cu) in Antarctic soils (Byers Peninsula, maritime Antarctica). Geoderma 195:145–154

    Google Scholar 

  • Paerl H, Pinckney J (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    PubMed  Google Scholar 

  • Pankow H, Haendel D, Richter W (1991) Die Algenflora der Schirmacheroase (Ostantarktika) Beihefte zur. Nova Hedwigia 103:1–195

    Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    CAS  PubMed  Google Scholar 

  • Pearce DA et al (2012) Metagenomic analysis of a southern maritime Antarctic soil. Front Microbiol. doi:10.3389/fmicb.2012.00403

    PubMed Central  PubMed  Google Scholar 

  • Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T (2010) Biophysical basis for the geometry of conical stromatolites. Proc Natl Acad Sci USA 107:9956–9961

    PubMed Central  CAS  PubMed  Google Scholar 

  • Philippot L et al (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619. doi:10.1038/ismej.2013.34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pinnaka AK, Singh A, Ara S, Begum Z, Reddy GS, Shivaji S (2013) Draft genome sequence of Leifsonia rubra strain CMS 76RT, isolated from a cyanobacterial mat sample from a pond in Wright Valley, McMurdo, Antarctica. Genom Announc. doi:10.1128/genomeA.00633-13

    Google Scholar 

  • Podgorny IA, Grenfell TC (1996) Absorption of solar energy in a cryoconite hole. Geophys Res Lett 23:2465–2468

    Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. doi:10.1038/nrmicro2831

    CAS  PubMed  Google Scholar 

  • Pointing SB, Belnap J (2014) Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers Conserv 23:1659–1667

    Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969. doi:10.1073/pnas.0908274106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Powell L, Bowman J, Skerratt J, Franzmann P, Burton H (2005) Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar Ecol Prog Ser 291:65–80

    CAS  Google Scholar 

  • Quiblier C, Wood S, Echenique-Subiabre I, Heath M, Villeneuve A, Humbert J-F (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria—ecology, toxin production and risk management. Water Res 47:5464–5479. doi:10.1016/j.watres.2013.06.042

    Google Scholar 

  • Rae BD, Long BM, Badger MR, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77:357–379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramond JB, Makhalanyane TP, Tuffin MI, Cowan DA (2015) Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members. Lett Appl Microbiol. doi:10.1111/lam.12380

    PubMed  Google Scholar 

  • Reddy GS, Ara S, Singh A, Kumar Pinnaka A, Shivaji S (2013) Draft genome sequence of Psychrobacter aquaticus Strain CMS 56T, isolated from a cyanobacterial Mat Sample collected from water bodies in the McMurdo Dry Valley Region of Antarctica. Genom Announc. doi:10.1128/genomeA.00918-13

    Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241

    CAS  PubMed  Google Scholar 

  • Rochera C, Villaescusa JA, Velázquez D, Fernández-Valiente E, Quesada A, Camacho A (2013) Vertical structure of bi-layered microbial mats from Byers Peninsula, Maritime Antarctica. Antarct Sci 25:270–276

    Google Scholar 

  • Ronca S, Frossard A, Guerrero LD, Makhalanyane TP, Aislabie JM, Cowan DA (2015) Draft genome sequence of Sphingomonas sp. strain Ant20, isolated from oil-contaminated soil on Ross Island, Antarctica. Genom Announc 3:e01309–e01314

    Google Scholar 

  • Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biol 49:296–319

    Google Scholar 

  • Santos HF et al (2014) Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. doi:10.1038/ismej.2014.70

    PubMed Central  Google Scholar 

  • Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, Southern Mojave Desert. Ecology 84:3222–3231. doi:10.1890/02-0549

    Google Scholar 

  • Seckbach J, Oren A (2010) Microbial mats: modern and ancient microorganisms in stratified systems, vol 14. Springer, Berlin

    Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    CAS  PubMed  Google Scholar 

  • Singh BK et al (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol. doi:10.1111/1462-2920.12353

    Google Scholar 

  • Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184

    Google Scholar 

  • Stanish LF et al (2013) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol 15:1115–1131

    CAS  PubMed  Google Scholar 

  • Steig EJ, Orsi AJ (2013) Climate science: the heat is on in Antarctica. Nat Geosci 6:87–88

    CAS  Google Scholar 

  • Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403

    CAS  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113. doi:10.1111/1574-6941.12143

    CAS  PubMed  Google Scholar 

  • Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    PubMed  Google Scholar 

  • Stomeo F et al (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340. doi:10.1111/j.1574-6941.2012.01360.x

    CAS  PubMed  Google Scholar 

  • Strauss SL, Garcia-Pichel F, Day TA (2012) Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol 35:1459–1471

    Google Scholar 

  • Strunecký O, Elster J, Komárek J (2012) Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiol Ecol 82:482–490

    PubMed  Google Scholar 

  • Sutherland DL (2009) Microbial mat communities in response to recent changes in the physiochemical environment of the meltwater ponds on the McMurdo Ice Shelf, Antarctica. Polar Biol 32:1023–1032

    Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003a) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003b) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    CAS  PubMed  Google Scholar 

  • Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88. doi:10.1016/j.tim.2004.11.002

    CAS  PubMed  Google Scholar 

  • Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    PubMed  Google Scholar 

  • Turner J, King JC, Lachlan-Cope TA, Jones PD (2002) Climate change (communication arising): recent temperature trends in the Antarctic. Nature 418:291–292

    CAS  PubMed  Google Scholar 

  • Ugolini FC, Bockheim JG (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1–8. doi:10.1016/j.geoderma.2007.10.005

    CAS  Google Scholar 

  • Valverde A, Makhalanyane TP, Seely M, Cowan DA (2015) Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol. doi:10.1111/mec.13068

    Google Scholar 

  • Van Horn DJ et al (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS ONE 8:e66103. doi:10.1371/journal.pone.0066103

    PubMed Central  PubMed  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012a) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78:549–559

    PubMed Central  PubMed  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012b) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol. doi:10.1128/AEM.06354-11

    PubMed Central  PubMed  Google Scholar 

  • Velázquez D, Rochera C, Camacho A, Quesada A (2011) Temperature effects on carbon and nitrogen metabolism in some Maritime Antarctic freshwater phototrophic communities. Polar Biol 34:1045–1055

    Google Scholar 

  • Verleyen E et al (2010) Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat Microb Ecol 59:11–24

    Google Scholar 

  • Vézina S, Vincent WF (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73N, 80W). Polar Biol 17:523–534

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. The ecology of cyanobacteria. Springer, Berlin, pp 321–340

    Google Scholar 

  • Vincent WF (2004) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. Algae and cyanobacteria in extreme environments. Springer, Berlin, pp 287–301

    Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48:103–112. doi:10.1016/j.cryobiol.2004.01.006

    PubMed  Google Scholar 

  • Vyverman W et al (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113. doi:10.1016/j.polar.2010.03.006

    Google Scholar 

  • Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460

    Google Scholar 

  • Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22:355–365

    Google Scholar 

  • Wharton RA Jr, McKay CP, Simmons GM Jr, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35(8):499–503

    PubMed  Google Scholar 

  • Wood SA, Mountfort D, Selwood AI, Holland PT, Puddick J, Cary SC (2008a) Widespread distribution and identification of eight novel microcystins in antarctic cyanobacterial mats. Appl Environ Microbiol 74:7243–7251. doi:10.1128/AEM.01243-08

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wood SA, Rueckert A, Cowan DA, Cary SC (2008b) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320. doi:10.1038/ismej.2007.104

    CAS  PubMed  Google Scholar 

  • Wynn-Williams D (1996a) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293

    Google Scholar 

  • Wynn-Williams D (1996b) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188

    CAS  PubMed  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682. doi:10.1111/j.1462-2920.2007.01379.x

    CAS  PubMed  Google Scholar 

  • Yergeau E et al (2008) Environmental microarray analyses of Antarctic soil microbial communities. Isme J 3:340–351. doi:10.1038/ismej.2008.111

    PubMed  Google Scholar 

  • Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214

    CAS  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J. doi:10.1038/ismej.2011.124

    PubMed Central  PubMed  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Kanda H, Nakatsubo T (2010) Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland. New Phytol 186:451–460

    PubMed  Google Scholar 

  • Yung CC et al (2014) Characterization of chasmoendolithic community in Miers Valley, McMurdo Dry Valleys, Antarctica. Microb Ecol 68:351–359

    PubMed  Google Scholar 

  • Zablocki O, van Zyl L, Adriaenssens EM, Rubagotti E, Tuffin M, Cary C, Cowan D (2014) High diversity of tailed phages, eukaryotic viruses and virophage-like elements in the metaviromes of Antarctic soils. Appl Environ Microbiol 01525–01514

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173

    CAS  PubMed  Google Scholar 

  • Ziolkowski L, Mykytczuk N, Omelon C, Johnson H, Whyte L, Slater G (2013) Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosci Discuss 10:2269–2304

    Google Scholar 

Download references

Acknowledgments

We wish to gratefully acknowledge the University of Pretoria Research Development Program (TPM), Genomics Research Institute, The National Research Foundation (NRF) of South Africa’s National Antarctic Program (SANAP program) (TPM, AV, EG. MWVG, DAC) and Ministerio de Economía y Competitividad (Spain): Grant ref CTM 2011-28736 (DV, AQ) for funding. We also wish to express our gratitude to Antarctica New Zealand for providing logistics support for our Antarctic research and Prof Craig Cary (University of Waikato NZTABS program) for facilitating access to Antarctica.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Cowan.

Additional information

Communicated by Anurag chaurasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhalanyane, T.P., Valverde, A., Velázquez, D. et al. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers Conserv 24, 819–840 (2015). https://doi.org/10.1007/s10531-015-0902-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0902-z

Keywords

Navigation