Biodiversity and Conservation

, Volume 24, Issue 3, pp 659–682 | Cite as

Effects of roads on insects: a review

  • Pilar Tamayo Muñoz
  • Felipe Pascual Torres
  • Adela González Megías
Review Paper

Abstract

In the last few decades, mounting evidence points to a negative impact of roads on several groups of animals. Most studies on the effects of roads on animal populations concentrate on vertebrates, and only a few on insects. It is difficult to determine the real effects of roads on insects due to the variety of methods used. We review recent literature examining the ecological impact of roads on insects. The objectives of our synthesis are to gain insight into the effects of the construction and operation of a road on insect groups, and to determine the gaps of knowledge. We found that roads negatively affect the abundance and diversity of insects due to two main factors: (1) the high mortality of some groups when crossing the road, with more impact at higher traffic volumes. (2) The unwillingness of many species to cross a road or live close to it. Roads are major barriers for small or flightless species, although the response varied for flying species. Finally, both experimental and observational evidence support the idea that air pollutants and de-icing salt used for the road maintenance negatively affect insects.

Keywords

Road mortality Insects Traffic volume Habitat fragmentation 

Notes

Acknowledgments

We would like to thank three anonymous reviewers for their comments on the manuscript. We would like to thank Dr. Hodges for all the help improving the manuscript. This work was partially funded by the Spanish government grant CGL2011-24840 and the Andalusian government Grant P011-RNM-7538.

References

  1. Andrews A (1990) Fragmentation of habitat by roads and utility corridors: a review. Australian Zool 26:130–141Google Scholar
  2. Andrews KM, Whitfield J, Reeder TW (2005) How do highways influence snake movement? Behavioral responses to roads and vehicles. Copeia 4:772–782Google Scholar
  3. Arroyave MP, Gómez C, Gutierrez ME, Múnera DP, Zapata PA, Vergara IC, Andrade LM, Ramos KC (2006) Impactos de las carreteras sobre la fauna silvestre y sus principales medidas de manejo. Revista EIA 5:45–57Google Scholar
  4. Askling J, Bergman KO (2003) Invertebrates—a forgotten group of animals in infrastructure planning? Butterflies as tools and model organisms in Sweden. In: Proceedings of the international conference on ecology and transportation, ICOET 2003Google Scholar
  5. Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164PubMedGoogle Scholar
  6. Benítez-López A, Alkemade R, Verweij PA (2010) The impact of roads and other infrastructure on mammal and bird population: a meta-analysis. Biol Conserv 143:1307–1316Google Scholar
  7. Bernáth B, Szedenics G, Molnár G, Kriska G, Horváth G (2001) Visual ecological impact of ‘shiny black anthropogenic products’ on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Arch Nat Conserv Lands Res 40:89–109Google Scholar
  8. Beyer WN, Moore J (1980) Lead residues in Eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway. Environ Entomol 9:10–12Google Scholar
  9. Bhattacharya M, Primack RB, Gerwein J (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? Biol Conserv 109:37–45Google Scholar
  10. Bohac J, Hanouskova I, Matejka K (2004) Effect of habitat fragmentation due to traffic impact of different intensity on epigeic beetle communities in cultural landscape of the Czech Republic. Ekologia (Bratislava) 22:35–46Google Scholar
  11. Bouchard J, Ford AT, Eigenbrod FE, Fahrig L (2009) Behavioral responses of northern leopard frogs (Rana pipiens) to roads and traffic: implications for population persistence. Ecol Soc 14:23Google Scholar
  12. Braun S, Flückiger W (1984) Increased population of the aphid Aphis pomi at a Motorway. Part 2—the effect of drought and deicing salt. Environ Pollut 36:261–270Google Scholar
  13. Braun S, Flückiger W (1985) Increased population of the aphid Aphis pomi at a motorway. Part 3—the effect of exhaust gases. Environ Pollut 39:183–192Google Scholar
  14. Caletrio J, Fernandez JM, Lopez J, Roviralta F (1996) Spanish national inventory on road mortality of vertebrates. Glob Biodivers 5:15–18Google Scholar
  15. Carpio C, Donoso DA, Ramón G, Dangles O (2009) Short term response of dung beetle communities to disturbance by road construction in the Ecuadorian Amazon. Ann Soc Entomol Fr 45:455–469Google Scholar
  16. Carr LW, Fahrig L (2001) Effect of road traffic on two amphibians species of differing vagility. Conser Biol 15:1071–1078Google Scholar
  17. Clevenger AP, Chruszcz B, Gunson KE (2003) Spatial pattern and factors influencing small vertebrate fauna road-kill aggregations. Biol Conserv 109:15–26Google Scholar
  18. De la Puente D, Ochoa C, Viejo JL (2008) Butterflies killed on roads (Lepidoptera, Papilionoidea) in “El Regajal-Mar de Ontigola” Nature Reserve (Aranjuez, Spain). XVII Bienal de la Real Sociedad Española de Historia Natural 17:137–152Google Scholar
  19. Dunn RR, Danoff-Burg JA (2007) Road size and carrion beetle assemblages in a New York forest. J Insect Conserv 11:325–332Google Scholar
  20. Findlay CS, Houlahan J (1997) Anthropogenic correlates of species richness in southeastern Ontario wetlands. Conserv Biol 11:1000–1009Google Scholar
  21. Forman RTT, Alexander LE (1998) Road and their major ecological effects. Ann Rev Ecol Syst 29:207–231Google Scholar
  22. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC (2003) Road ecology. Science and solutions. Island Press, WashingtonGoogle Scholar
  23. Foster SE, Soluk DA (2006) Protecting more than the wetland: the importance of biased sex ratios and habitat segregation for conservation of the Hine’s emerald dragonfly, Somatochlora hineana Williamson. Biol Conserv 127:158–166Google Scholar
  24. Fränzel U (1985) Öko-ethologische Untersuchungen an Cordulegaster bidentatus Selys, 1843 (Insecta: Odonata) im Bonner Raum. University Bonn, ThesisGoogle Scholar
  25. Fraser FC (1936) The Fauna of British India. Odonata, vol 3. Taylor and Francis, LondonGoogle Scholar
  26. Georgii B, Keller V, Pfister HP, Reck H, Peters-Ostenberg E, Henneberg M, Herrmann M, Mueller-Stiess H, Bach L (2011) Use of wildlife passages by invertebrates and vertebrates species. Wildlife passages in Germany 2011Google Scholar
  27. Giles FE, Middleton SG, Grau JG (1973) Evidence for the accumulation of atmospheric lead by insects in areas of high traffic density. Environ Entomol 2:299–300Google Scholar
  28. Glista DJ, DeVault TL, DeWoody JA (2009) A review of mitigation measures for reducing wildlife mortality on roadways. Land Urban Plan 91:1–7Google Scholar
  29. Goldsmith DC, Scanlon PF (1977) Lead levels in small mammals and selected invertebrates associated with highways of different traffic densities. Bull Environ Contam Toxicol 17:311–316PubMedGoogle Scholar
  30. Gryz J, Krauze D (2008) Mortality of vertebrates on a road crossing the Biebrza Valley (NE Poland). Eur J Wildl Res 54:709–714Google Scholar
  31. Haskell DG (2000) Effects of forest roads on macroinvertebrate soil fauna of the southern Appalachian Mountains. Conserv Biol 14:57–63Google Scholar
  32. Hayward MW, Hayward GJ, Kerley GIH (2010) The Impact of Upgrading Roads on the Conservation of the Threatened Flightless Dung Beetle, Circellum bacchus (F.) (Coleoptera: Scarabaeidae). Coleopt Bull 64:75–80Google Scholar
  33. Heller G, Rohe W (2000) Vergleichende Untersuchung zur Ameisenfauna von Grünlandstandorten in Rheinland-Pfalz. Mainzer Naturwissenschaftliches. Archiv 38:123–173Google Scholar
  34. Hess LJ (1969). The effects of logging road construction on insect drop into a small coastal stream. Dissertation of the Faculty of Humboldt State CollegeGoogle Scholar
  35. Holzhauer IJ, Ekschmitt S, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21:891–899Google Scholar
  36. Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304Google Scholar
  37. Horváth G, Bernath B, Molnar G (1998) Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85:292–297Google Scholar
  38. Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshw Biol 52:1700–1709Google Scholar
  39. Itzhak MJJ (2008) Seed harvester and scavenger ants along roadsides in Northern Israel. Zool Middle East 44:75–82Google Scholar
  40. Jackson ND, Fahrig L (2011) Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol Conserv 144:3142–3148Google Scholar
  41. Jones DN, Bond ARF (2010) Road barrier effect on small birds removed by vegetated overpass in South East Queenland. Ecol Manag Restor 11:65–67Google Scholar
  42. Kambourova-Ivanova N, Koshev Y, Popgeorgiev G, Ragyov D, Pavlova M, Mollov I, Nedialkow N (2012) Effect of traffic on mortality of amphibians, reptiles, birds and mammals on two types of roads between Pazardzhik and Plovdiv Region (Bulgaria)—preliminary results. Acta Zool Bulg 64:57–67Google Scholar
  43. Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond B 270:417–423Google Scholar
  44. Keller I, Nentwig W, Largiadèr CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994PubMedGoogle Scholar
  45. Keller I, Excoffier L, Largiader CR (2005) Estimation of effective population size and detection of a recent population decline coinciding with habitat fragmentation in a ground beetle. J Evol Biol 18:90–100PubMedGoogle Scholar
  46. Kennedy CH (1917) Notes on the life history and ecology of the dragonflies (Odonata) of central California and Nevada. Proc US Nat Mus 52:483–635Google Scholar
  47. Kennedy CH (1938) The present status of work on the ecology of aquatic insects as shown by the work on the Odonata. Ohio J Sci 38:267Google Scholar
  48. Knapp M, Saska P, Knappová J, Vonička P, Moravec P, Kurka A, Andel P (2013) The habitat-specific effects of highway proximity on ground-dwelling arthropods: implications for biodiversity conservation. Biol Conserv 164:22–29Google Scholar
  49. Koivula MJ (2005) Effects of forest roads on spatial distribution of boreal carabid beteles (Coleoptera: Carabidae). Coleopt Bull 59:465–487Google Scholar
  50. Koivula MJ, Vermeulen HJW (2005) Highways and forest fragmentation –effects on carabid beteles (Coleoptera, Carabidae). Landsc Ecol 20:911–926Google Scholar
  51. Koivula MJ, Kotze DJ, Salokannel J (2005) Beetles (Coleoptera) in central reservations of three highway roads around the city of Helsinki, Finland. Ann Zool Fenn 42:615–626Google Scholar
  52. Kriska G, Horvath G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt road? Water-imitating polarized light reflected from asphalt attracts ephemeroptera. J Exp Biol 201:2273–2286PubMedGoogle Scholar
  53. Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173PubMedGoogle Scholar
  54. Litvaitis JA, Tash JP (2008) An approach toward understanding wildlife-vehicle collisions. Environ Manag 42:688–697Google Scholar
  55. Lode T (2000) Effect of a motorway on mortality and isolation of wildlife populations. Ambio 29:163–166Google Scholar
  56. Lövei GL, Sunderland KD (1996) Ecology and behaviour of ground beetles (Coleoptera, Carabidae). Annu Rev Entomol 41:231–256PubMedGoogle Scholar
  57. Luce A, Crowe M (2001) Invertebrate terrestrial diversity along a gravel road on Barrie Island, Ontario, Canada. Great Lakes Entomol 34:55–60Google Scholar
  58. MacKinnon CA, Moore LA, Brooks RJ (2005) Why did the reptile cross the road? Landscape factors associated with road mortality of snakes and turtles in the South Eastern Georgian Bay area. In: PRFP proceedings, pp 153–166Google Scholar
  59. Mader HJ (1979) Die Isolationswirkung von Verkehrsstrassen auf Tierpopulationen untersucht am Beispiel von Arthropoden und Kleinsäugern der Waldbiozönose. Schriftenreihe Landschaftspflege Naturschutz 19:1–126Google Scholar
  60. Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96Google Scholar
  61. Mader HJ (1988) The significance of paved agricultural roads as barriers to ground dwelling arthropods. In: Schreiber KF (ed) Connectivity in landscape ecology. Proceedings of the 2nd international seminar of the “International association for landscape ecology”, Münster. Münstersche Geographische Arbeiten, pp 97–100Google Scholar
  62. Mader HJ, Schell C, Kornacker P (1990) Linear barriers to arthropod movements in the landscape. Biol Conserv 54:209–222Google Scholar
  63. Martel J (1995) Seasonal variations in roadside conditions and the performance of a gall-forming insect and its food plant. Environ Poll 88:155–160Google Scholar
  64. Maurer R (1974) The beetle and spider fauna of meadows affected by traffic pollution. Fla Entomol 57:330Google Scholar
  65. McGregor RL, Bender DJ, Fahrig L (2008) Do small mammals avoid roads because of traffic? J Appl Ecol 45:117–123Google Scholar
  66. McKenna D, McKenna K, Malcom SB, Berenbaum MR (2001) Mortality of lepidóptera along roadways in Central Illinois. J Lepid Soc 55:63–68Google Scholar
  67. Melis C, Bjerk C, Hyllvang M, Gobbi M, Stokke BG, Roskaft E (2010) The effect of traffic intensity on ground beetle (Coleoptera: Carabidae) assemblages in central Sweden. J Insect Conserv 14:159–168Google Scholar
  68. Munguira ML, Thomas JA (1992) Use of road verges by butterfly and burnet populations, and the effect of roads on adult dispersal and mortality. J Appl Ecol 29:316–329Google Scholar
  69. Muskett CJ, Jones MP (1980) The dispersal of lead cadmium and nickel from motor vehicles and effects on road sides invertebrate macrofauna. Environ Pollut 23:231–242Google Scholar
  70. Neville P (1960) A list of Odonata from Ghana, with notes on their mating, flight, and resting sites. Proc R Entomol Soc Lond A 35:124–128Google Scholar
  71. Niemelä J (2001) Carabid beteles (Coleoptera: Carabidae) and hábitat fragmentation: a review. Eur J Entomol 98:127–132Google Scholar
  72. Noordijk J, Prins D, Jonge M, Vermeulen R (2006) Impact of a road on the movements of two ground beetle species (Coleoptera: Carabidae). Entomologica Fennica 17:276–283Google Scholar
  73. Petranka JW, Doyle EJ (2010) Effects of road salts on the composition of seasonal pond communities: can the use of road salts enhance mosquito recruitment? Aquat Ecol 44:155–166Google Scholar
  74. Port GR, Thompson JT (1980) Outbreaks of insect herbivores on plants along motorways in the United Kingdom. J App Ecol 17:649–656Google Scholar
  75. Price PW, Rathske BJ, Gentry DA (1974) Lead in terrestrial arthropods: evidence for biological concentration. Environ Manag 3:370–372Google Scholar
  76. Przybylski Z (1979) The effects of automobile exhaust gases on the arthropods of cultivated plants, meadows and orchards. Environ Pollut 19:157–161Google Scholar
  77. Puschnig R (1926) Albanische Libellen. Konowia 5:33, 113, 208, 313Google Scholar
  78. Raemakers IP, Schaffers AP, Sýkora KV, Heijerman T (2001) The importance of plant communities in road verges as a habitat for insects. Proc Exper Appl Entomol Netherlands Entomol Soc 12:101–106Google Scholar
  79. Rao RSP, Girish MKS (2007) Road kills: assessing insect casualties using flagship taxon. Curr Sci 92:830–837Google Scholar
  80. Reijnen R, Foppen R, Veenbaas G (1997) Disturbance by traffic of breeding birds: evaluation of the effects and considerations in planning and managing road corridors. Biodivers Conserv 6:567–581Google Scholar
  81. Rietze J, Reck H (1991) Untersuchungen zur Besiedlung der Verkehrsnebenflächen des Autobahnkreuzes Stuttgart durch Heuschrecken (Orthoptera, Saltatoria) mit besonderer Berücksichtigung der Dispersion der Grossen Goldschrecke (Chrysochraon dispar). Articulata 6:91–119Google Scholar
  82. Riffell SK (1999) Road mortality of dragonflies (odonata) in a great lakes coastal wetland. Great Lakes Entomol 32(1–2):63–74Google Scholar
  83. Robel RJ, Howard CA, Udevitz MS, Curnutte B (1981) Lead contamination in vegetation, cattle dung, and dung beetles near an interstate highway, Kansas. Environ Entomol 10:262–263Google Scholar
  84. Roedenbeck IA, Fahrig L, Findlay CS, Houlahan JE, Jaeger JAG, Klar N, Kramer-Schadt S, Van der Grift EA (2007) The Rauischholzhausen agenda for road ecology. Ecol Soc 12:11Google Scholar
  85. Samways MJ, Osborn R, Carliel F (1997) Effect of a highway on ant (Hymenoptera: Formicidae) species composition and abundance, with a recommendation for roadside verge width. Biodivers Conserv 6:903–913Google Scholar
  86. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540Google Scholar
  87. Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol A 177:439–448Google Scholar
  88. Seibert HC, Conover JH (1991) Mortality of vertebrates and invertebrates on an Athens county, Ohio, Highway. Ohio J Sci 91:163–166Google Scholar
  89. Seiler A (2001) Ecological effects of roads: a review. Introductory research essay no. 9. Department of Conservation Biology, Uppsala 9Google Scholar
  90. Seshadri KS, Ganesh T (2011) Faunal mortality on roads due to religious tourism across time and space in protected areas: a case study from south India. For Ecol Manag 262:1713–1721Google Scholar
  91. Severns PM (2008) Road crossing behavior of an endangered grassland butterfly, Icaricia icarioides fenderi macy (Lycaenidae), between a subdivided population. J Lepidopt Soc 62:53–56Google Scholar
  92. Skórka P, Lenda M, Morón D, Kalarus K, Tryjanowski P (2013) Factors affecting road mortality and the suitability of road verges for butterflies. Biol Conserv 159:148–157Google Scholar
  93. Soluk A, Zercher DS, Worthington AM (2011) Influence of roadways on patterns of mortality and flight behavior of adult dragonflies near wetland areas. Biol Conserv 144:1638–1643Google Scholar
  94. Spellerberg I (1998) Ecological effects of roads and traffic: a literature review. Global Ecol Biogeogr 7:317–333Google Scholar
  95. Spencer HJ, Port GR (1988) Effects of roadside conditions on plants and insects. II. Soil conditions. J Appl Ecol 25:709–715Google Scholar
  96. Spencer HJ, Scott NE, Port GR, Davison AW (1988) Effects of roadside conditions on plants and insects. I. Atmospheric conditions. J Appl Ecol 25:699–707Google Scholar
  97. Thiele HU (1977) Carabid beetles in their environments. A study on habitat selection by adaptation in physiology and behaviour. In: Zoophysiology and ecology, vol 10. Springer, BerlinGoogle Scholar
  98. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30Google Scholar
  99. Udevitz MS, Howard CA, Robel RJ, Curnutte B (1980) Lead Contamination in Insects and Birds near an Interstate Highway, Kansas. Environ Entomol 9:35–36Google Scholar
  100. Valladares F, Balaguer L, Mola I, Escudero A, Alfaya V (2011) Restauración ecológica de áreas afectadas por infraestructuras de transporte. Bases científicas para soluciones técnicas. Fundación Biodiversidad, MadridGoogle Scholar
  101. Van Bohemen HD (1998) Habitat fragmentation, infrastructure and ecological engineering. Ecol Eng 11:199–207Google Scholar
  102. Wachmann E, Platen R, Barndt D (1995) Laufkäfer: beobachtung, lebensweise. Naturbuch Verlag, AugsburgGoogle Scholar
  103. Wade KJ, Flanagan JT, Currie A, Curtis DJ (1980) Roadside gradients of lead and zinc concentrations in surface-dwelling invertebrates. Environ Pollut 1:87–93Google Scholar
  104. Whitehouse FC (1943) A guide to the study of dragonflies of Jamaica. Institute of Jamaica, KingstonGoogle Scholar
  105. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302Google Scholar
  106. Wildermuth H, Horváth G (2005) Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). Int J Odonatology 8:97–105Google Scholar
  107. Williamson P, Evans PR (1972) Lead levels in roadside invertebrates and small mammals. Bull Environ Contam Toxicol 8:280–288PubMedGoogle Scholar
  108. Yamada Y, Sasaki H, Harauchi Y (2010a) Effects of narrow roads on the movement of carabid beteles (Coleoptera, Carabidae) in Nopporo Forest Park, Hokkaido. J Insect Conserv 14:151–157Google Scholar
  109. Yamada Y, Sasaki H, Harauchi Y (2010b) Composition of road-killed insects on coastal roads around Lake Shikotsu in Hokkaido, Japan. J Rakuno Gakuen Univ 34:177–184Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pilar Tamayo Muñoz
    • 1
  • Felipe Pascual Torres
    • 1
  • Adela González Megías
    • 1
    • 2
  1. 1.Departamento de Biología Animal, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Zoología, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations