Congruence between species phylogenetic and trophic distinctiveness

Abstract

Preserving biodiversity has become vital in a time of rapid environmental changes since biodiversity loss compromises ecosystem functioning and subsequently services on which human welfare depends. Biodiversity encompasses taxonomic, process and structure heterogeneity and its evaluation requires an integrative approach. Additionally, different taxa have been shown to unequally contribute to biodiversity. Conservation efforts would benefit from focusing on taxa bearing a highly distinct contribution to multiple biodiversity components, for a more efficient retention of a sustainable level of biodiversity. Both phylogenetic diversity and interaction diversity are essential components of biodiversity. An association between phylogenetic affiliations and ecological interactions has been found for a wide range of organisms, with closely related species engaging in similar interactions. Further, nested (specialists using a subset of the resources used by generalists) and modular (subguilds of consumer–resource relationships) interaction structures have been identified to enhance the resilience of ecosystem dynamics. We combine phylogenetic and network analyses to evaluate the relationship between species contributions to phylogenetic diversity and their contributions to the diversity and structure of trophic interactions in an African assemblage of mammalian herbivores. We identified positive relationships between species contributions to phylogenetic diversity, interaction diversity and nested interaction structure. This means that conservation actions aiming at protecting evolutionary distinct species have the potential to simultaneously maximise interaction diversity and nested architecture. Species contributions to modular interaction patterns were nonetheless uncorrelated to contributions to phylogenetic diversity, and indicated the importance of some phylogenetic redundancy between species for retaining a modular structure in the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barber M (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:1–9

    Article  Google Scholar 

  2. Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    CAS  PubMed  Article  Google Scholar 

  4. Bersier L-F, Kehrli P (2008) The signature of phylogenetic constrains on food-web structure. Ecol Complex 5:132–139

    Article  Google Scholar 

  5. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    CAS  PubMed  Article  Google Scholar 

  6. Bond WJ, Keeley JE (2005) Fire as a global “herbivore”: the ecology and evolution of flamable ecosystems. Trends Ecol Evol 20:387–394

    PubMed  Article  Google Scholar 

  7. Buitenwerf R, Swemmer AM, Peel MJS (2011) Long-term dynamics of herbaceous vegetation structure and composition in two African savanna reserves. J Appl Ecol 48:238–246

    Article  Google Scholar 

  8. Cattin MF, Bersier L-F, Banasek-Ritcher C, Baltensperger R, Gabriel JP (2004) Phylogenetic constrains and adaptation explain food-web structure. Nature 427:835–839

    CAS  PubMed  Article  Google Scholar 

  9. Cerling TE, Harris JM, Passey BH (2003) Diets of East African bovidae on stable isotope analysis. J Mammal 84:456–470

    Article  Google Scholar 

  10. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol Syst 31:343–366

    Article  Google Scholar 

  11. Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101

    CAS  PubMed  Article  Google Scholar 

  12. Dalerum F (2013) Phylogenetic and functional diversity in large carnivore assemblages. Proc R Soc B 280(1760):20130049

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Dalerum F, Cameron EZ, Kunkel K, Somers MJ (2012) Interactive effects of species richness and species traits on functional diversity and redundancy. Theor Ecol 5:129–139

    Article  Google Scholar 

  14. Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theor Exp art no P09008

  15. Devictor V, Mouillot D, Meynard C, Jiguet F, Thruiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  16. Devoto M, Bailey S, Craze P, Memmot J (2012) Understanding and planning ecological restoration of plant-pollinator networks. Ecol Lett 15:319–328

    Article  Google Scholar 

  17. Díaz S, Purvis A, Cornalissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3:2958–2975

    PubMed Central  PubMed  Article  Google Scholar 

  18. Dobson A (2009) Food-web structure and ecosystem services: insights from the Serengeti. Philos Trans R Soc B 364:1665–1682

    Article  Google Scholar 

  19. Dormann CF, Strauss R (2013) Detecting modules in quantitative bipartite networks: the QuaBiMo algorithm. arXiv:1304.3218[q-bio.QM]

  20. Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8(2):8–11

    Google Scholar 

  21. Dormann CF, Blüthgen N, Fründ J, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  22. Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    PubMed  Article  Google Scholar 

  23. Ehrlich PR, Ehrlich AH (1981) Extinction: the causes and consequences of the disappearance of species. Random House, New York

    Google Scholar 

  24. Eklöf A, Helmus MR, Moore M, Allesina S (2012) Relevance of evolutionary history for food web structure. Proc R Soc B 279:1588–1596

    PubMed Central  PubMed  Article  Google Scholar 

  25. Elias M, Fontaine C, Frank van Veen FJ (2013) Evolutionary history and ecological processes shape a local multilevel antagonistic network. Curr Biol 23:1355–1359

    CAS  PubMed  Article  Google Scholar 

  26. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  27. Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79:811–817

    PubMed  Google Scholar 

  28. Franklin JF (1998) Structural and functional diversity in temperate forests. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington DC, pp 166–175

    Google Scholar 

  29. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    CAS  PubMed  Article  Google Scholar 

  30. Gagnon M, Chew AE (2000) Dietary preferences in extant African Bovidae. J Mammal 81:490–511

    Article  Google Scholar 

  31. Galeano J, Pastor JM, Iriondo JM (2008) Weighted-Interaction Nestedness Estimator (WINE): a new estimator to calculate over frequency matrices. arXiv 0808.3397v1 [physics.bio-ph]

  32. GCIS (Government Communication and Information System) (2013) South Africa official yearbook. Van Niekerk L (ed). CTP Printers, Republic of South Africa

  33. Gómez JM, Verdú M, Perfectti F (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–922

    PubMed  Article  Google Scholar 

  34. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874

    Article  Google Scholar 

  35. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    PubMed Central  PubMed  Article  Google Scholar 

  36. Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  37. IPCC (2013) van Oldenborgh GJ, Collins M, Arblaster J Christensen JH, Marotzke J, Power SB, Rummukainen M, Zhou T (eds) Annex I: atlas of global and regional climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia YBex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  38. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2:e296

    PubMed Central  PubMed  Article  Google Scholar 

  39. Ives AR, Godfray HCJ (2006) Phylogenetic analysis of trophic associations. Am Nat 168:E1–E14

    CAS  PubMed  Article  Google Scholar 

  40. Jordán F, Liu WC, Mike A (2009) Trophic field overlap: a new approach to quantify keystone species. Ecol Model 220:2899–2907

    Article  Google Scholar 

  41. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  Article  Google Scholar 

  42. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes GJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term Climate Change: Projections and Predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  43. Krasnov BR, Fortuna MA, Mouillot D, Khokhlova IS, Shenbrot G, Poulin R (2010) Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am Nat 179:501–511

    Article  Google Scholar 

  44. Legendre P, Legendre L (2012) Numerical ecology, 3rd English Edition edn. Elsevier, Amsterdam

    Google Scholar 

  45. Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–258

    CAS  PubMed  Article  Google Scholar 

  46. Low AB, Rebelo AG (1996) Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria, South Africa

    Google Scholar 

  47. Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300:1707–1709

    CAS  PubMed  Article  Google Scholar 

  48. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org. Accessed 26 Nov 2013

  49. Maddison WP, Mooers AØ (2009) Tuatara: conservation priority in a phylogenetic context. Version 1.01 http://mesquiteproject.org/packages/tuatara. Accessed 26 Nov 2013

  50. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2012) Cluster: cluster analysis basics and extensions. R package version 1.14.3

  51. Maire A, Buisson L, Biau S, Canal J, Laffaille P (2013) A multi-faceted framework of diversity for prioritizing the conservation of fish assemblages. Ecol Indic 34:450–459

    Article  Google Scholar 

  52. May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  53. McCann K (2007) Protecting biostructure. Nature 446:29

    CAS  PubMed  Article  Google Scholar 

  54. Melián CJ, Bascompte J (2002) Complex networks: two ways to be robust? Ecol Lett 5:705–708

    Article  Google Scholar 

  55. Miranda M, Dalerum F, Parrini F (2014) Interaction patterns within a multi-herbivore assemblage derived from stable isotopes. Ecol Complex. doi:10.1016/j.ecocon.2014.08.002

  56. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Article  Google Scholar 

  57. Nel HP (2000) Ecological management objectives and monitoring procedures for Rustenburg Nature Reserve, North West Province. Master thesis, Centre for Wildlife Management, Faculty of Natural and Agricultural Sciences, University of Pretoria. Pretoria, South Africa

  58. Nel P, Knoop C, Seitlhamo W, Tshenkeng P (2011) Animal population estimates for protected areas in the North West Province. Scientific Report, North West Parks and Tourism Board, Mafikeng, South Africa

    Google Scholar 

  59. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  60. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0-5. http://CRAN.R-project.org/package=vegan

  61. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. Owen-Smith N (1997) Distinctive features of the nutritional ecology of browsing versus grazing ruminants. Mamm Biol 62:176–191

    Google Scholar 

  63. Parrini F, Owen-Smith N (2010) The importante of post-fire regrowth for sable antelope in a Southern African savanna. Afr J Ecol 48:526–534

    Article  Google Scholar 

  64. Petchey OL, Eklöf A, Borrvall C, Ebenman B (2008) Trophically unique species are vulnerable to cascading extinction. Am Nat 171:568–579

  65. Petchey OL, Gaston KJ (2007) Dendrograms and measuring functional diversity. Oikos 116:1422–1426

    Article  Google Scholar 

  66. Petchey OL, Gaston KJ (2009) Dendrograms and measuring functional diversity: a second instalment. Oikos 118:1118–1120

    Article  Google Scholar 

  67. QGIS Development Team (2013) QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  68. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  69. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Eco Evol 24:505–514

    Article  Google Scholar 

  70. Rezende EL, Lavabre JE, Guimarães PR Jr, Jordano P, Bascompte J (2007a) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928

    CAS  PubMed  Article  Google Scholar 

  71. Rezende EL, Jordano P, Bascompte J (2007b) Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos 116:1919–1929

    Article  Google Scholar 

  72. Rezende EL, Albert EM, Fortuna MA, Bascompte J (2009) Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol Lett 12:779–788

    PubMed  Article  Google Scholar 

  73. Rohlf FJ, Fisher DL (1968) Test for hierarchical structure in random data sets. Syst Zool 17:407–412

    Article  Google Scholar 

  74. Rutherford MC, Midgley GF, Bond WJ, Powrie LW, Roberts R, Allsopp J (1999) In: Kiker G (ed) Climate change impacts in southern Africa. Report to the National Climate Change Committee, Department of Environment Affairs and Tourism, Pretoria

  75. Sinclair ARE, Norton-Griffiths M (1979) Serengeti; dynamics of an ecosystem. University of Chicago Press, Chicago

    Google Scholar 

  76. Skinner JD, Smithers RHN (1990) The mammals of the southern African subregion, 2nd edn. University of Pretoria, Pretoria

    Google Scholar 

  77. Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648

    PubMed  Article  Google Scholar 

  78. Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci USA 108:3648–3652

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  79. Thompson JN (2009) The coevolving web of life. Am Nat 173:125–140

    PubMed  Article  Google Scholar 

  80. Tshenkeng P (2012) Kgaswane mountain reserve ecological status report. Scientific Report, North West Parks and Tourism Board, Mahikeng, South Africa

    Google Scholar 

  81. Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85:1251–1257

    Article  Google Scholar 

  82. Verdú M, Valiente-Banuet A (2010) The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos 120:1351–1356

    Article  Google Scholar 

  83. Walker B (1992) Biological diversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to North West Parks and Tourism Board and Kgaswane Mountain Reserve management, which provided free access and accommodation within the reserve premises and facilitated our work at all times. Dr Fredrik Dalerum provided advise on distinctiveness and uniqueness computations and statistics. MM was supported by a Free-standing Postdoctoral Fellowship co-funded by the National Research Foundation and the University of the Witwatersrand, and a Claude Leon Postdoctoral Fellowship. FP received financial support from the University of the Witwatersrand. Project funding was provided by the University of the Witwatersrand and the National Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Miranda.

Additional information

Communicated by Dirk Sven Schmeller.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miranda, M., Parrini, F. Congruence between species phylogenetic and trophic distinctiveness. Biodivers Conserv 24, 355–369 (2015). https://doi.org/10.1007/s10531-014-0813-4

Download citation

Keywords

  • Herbivory
  • Interaction uniqueness
  • Evolutionary distinctiveness
  • Phylogenetic diversity
  • Savanna
  • Trophic network