Advertisement

Biodiversity and Conservation

, Volume 24, Issue 2, pp 337–353 | Cite as

Multi-scale ecology of woodland bat the role of species pool, landscape complexity and stand structure

  • Rauno KaldaEmail author
  • Oliver Kalda
  • Kertu Lõhmus
  • Jaan Liira
Original Paper

Abstract

Fragmentation of forest landscapes and structural degradation of woodlands have a holistic negative effect on biodiversity. Bats are considered as indicators of woodland’s structural quality. However, as bats commute long distances on a nightly basis, their diversity should also be limited by large-scale drivers such as landscape and species availability in the region. Therefore we examined roles of the local species pool, landscape structure and habitat properties on species richness of bats through three spatial scales with emphasis on top–down relationships. Our aim for conservation ecology was to evaluate habitat quality and the importance of stand origin, i.e. contrast between mature forests and old parks. Bats were surveyed in 28 landscape windows, which consisted of at least one park and forest site. In total we sampled 63 deciduous woodlands in Estonia. In each site we sampled two microhabitats: edge and stand interior. Bat species richness was mostly explained by large-scale drivers, such as local species pool and landscape composition within 1 km radius. Stand properties had a weaker effect, driven by understory clutter. At the finest scale, the importance of edge habitats was emphasized by greater species richness at the edge in comparison to the stand interior and the edge’s predictive power on species richness in the stand interior. Habitat origin (park vs. forest) was an important aspect only for small-scale species richness, specifically in woodland interiors. The conservation policy of woodland bats should be based on complex multi-scale planning, in which natural and anthropogenic woodlands can be considered as a single land-cover type. To provide optimal foraging habitat for bats, the forest landscape should be diversified with integrated small waterbodies and canopy gaps with sharp edges.

Keywords

Chiroptera Cultural heritage Forest landscape ecology Forest policy Landscape planning Sustainable forestry Top–down relationships 

Notes

Acknowledgments

This project was supported by Tartu University via target-financing project SF0180012s09, by the Estonian Science Agency (project no. 7878) and via the ERA-Net BiodivERsA project smallFOREST, and the European Union through the European Regional Development Fund (the Centre of Excellence FIBIR). Derettens OÜ (www.derettens.com) edited the use of English.

References

  1. Abner O, Konsa S, Lootus K, Sinijärv U (2007) Eesti pargid. Keskkonnaministeerium : Muinsuskaitseamet : Varrak, TallinnGoogle Scholar
  2. Adermann V (2009) Estonian forests 2008. The estimation of forest sources by statistical sampling methodology. In: Estonian with English summary. Metsakaitse- ja MetsauuenduskeskusGoogle Scholar
  3. Bibby CJ, Burgess ND, Hill DA, Mustoe S (2000) Bird census techniques, 2 edn. Academic Press Inc, San DiegoGoogle Scholar
  4. Boughey KL, Lake IR, Haysom KA, Dolman PM (2011) Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK. Biol Conserv 144:2300–2310CrossRefGoogle Scholar
  5. Brigham RM, Grindal SD, Firman MC, Morissette JL (1997) The influence of structural clutter on activity patterns of insectivorous bats. Can J Zool 75:131–136. doi: 10.1139/z97-017 CrossRefGoogle Scholar
  6. Buckley DJ, Lundy MG, Boston ESM et al (2013) The spatial ecology of the whiskered bat (Myotis mystacinus) at the western extreme of its range provides evidence of regional adaptation. Mamm Biol Z Für Säugetierkd 78:198–204. doi: 10.1016/j.mambio.2012.06.007 CrossRefGoogle Scholar
  7. Cerveny J, Burger P (1989) Density and structure of the bat community occupying an old park at Zihobce (Czechoslovakia). Charles University Press, PragueGoogle Scholar
  8. Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1. doi: 10.2307/5503 CrossRefGoogle Scholar
  9. Crampton LH, Barclay RMR (1998) Selection of roosting and foraging habitat by bats in different-aged aspen mixedwood stands. Conserv Biol 12:1347–1358CrossRefGoogle Scholar
  10. Dietz C, Nill D, von Helversen O (2009) Bats of Britain. Europe and Northwest Africa A & C Black, LondonGoogle Scholar
  11. Dixon MD (2012) Relationship between land cover and insectivorous bat activity in an urban landscape. Urban Ecosyst 15:683–695. doi: 10.1007/s11252-011-0219-y CrossRefGoogle Scholar
  12. Entwistle AC, Racey PA, Speakman JR (1996) Habitat exploitation by a gleaning bat, Plecotus auritus. Philos Trans R Soc Lond Ser B-Biol Sci 351:921–931. doi: 10.1098/rstb.1996.0085 CrossRefGoogle Scholar
  13. Frafjord K (2013) Influence of night length on home range size in the northern bat Eptesicus nilssonii. Mamm Biol—Z Für Säugetierkd 78:205–211. doi: 10.1016/j.mambio.2012.06.005 CrossRefGoogle Scholar
  14. Frey-Ehrenbold A, Bontadina F, Arlettaz R, Obrist MK (2013) Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. J Appl Ecol 50:252–261. doi: 10.1111/1365-2664.12034 CrossRefGoogle Scholar
  15. Fuentes-Montemayor E, Goulson D, Cavin L et al (2013) Fragmented woodlands in agricultural landscapes: the influence of woodland character and landscape context on bats and their insect prey. Agric Ecosyst Environ 172:6–15. doi: 10.1016/j.agee.2013.03.019 CrossRefGoogle Scholar
  16. Fukui D, Hirao T, Murakami M, Hirakawa H (2011) Effects of treefall gaps created by windthrow on bat assemblages in a temperate forest. For Ecol Manag 261:1546–1552. doi: 10.1016/j.foreco.2011.02.001 CrossRefGoogle Scholar
  17. Gehrt SD, Chelsvig JE (2003) Bat activity in an urban landscape: patterns at the landscape and microhabitat scale. Ecol Appl 13:939–950. doi: 10.1890/02-5188 CrossRefGoogle Scholar
  18. Glendell M, Vaughan N (2002) Foraging activity of bats in historic landscape parks in relation to habitat composition and park management. Anim Conserv 5:309–316CrossRefGoogle Scholar
  19. Grindal SD, Morissette JL, Brigham RM (1999) Concentration of bat activity in riparian habitats over an elevational gradient. Can J Zool Rev Can Zool 77:972–977. doi: 10.1139/cjz-77-6-972 CrossRefGoogle Scholar
  20. Hein CD, Castleberry SB, Miller KV (2009) Site-occupancy of bats in relation to forested corridors. For Ecol Manag 257:1200–1207CrossRefGoogle Scholar
  21. Humes ML, Hayes JP, Collopy MW (1999) Bat activity in thinned, unthinned, and old-growth forests in western Oregon. J Wildl Manag 63:553–561CrossRefGoogle Scholar
  22. Jaberg C, Guisan A (2001) Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment. J Appl Ecol 38:1169–1181CrossRefGoogle Scholar
  23. Jantzen MK, Fenton MB (2013) The depth of edge influence among insectivorous bats at forest–field interfaces. Can J Zool 91:287–292. doi: 10.1139/cjz-2012-0282 CrossRefGoogle Scholar
  24. Johnson JB, Ford WM, Edwards JW, Menzel MA (2010) Bat community structure within riparian areas of northwestern Georgia, USA. Folia Zool 59:192–202Google Scholar
  25. Kaňuch P, Kaňuch A (2005) Factors influencing bat assemblages in forest parks. Ekol Bratisl 24:45–56Google Scholar
  26. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. doi: 10.2307/3235676 CrossRefGoogle Scholar
  27. Kurta A, Teramino JA (1992) Bat community structure in an urban park. Ecography 15:257–261CrossRefGoogle Scholar
  28. Kusch J, Weber C, Idelberger S, Koob T (2004) Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zool 53:113–128Google Scholar
  29. Lesiński G, Kowalski M, Wojtowicz B et al (2007) Bats on forest islands of different size in an agricultural landscape. Folia Zool 56:153–161Google Scholar
  30. Liira J, Sepp T (2009) Indicators of structural and habitat natural quality in boreo-nemoral forests along the management gradient. Ann Bot Fenn 46:308–325CrossRefGoogle Scholar
  31. Lõhmus K, Liira J (2013) Old rural parks support higher biodiversity than forest remnants. Basic Appl Ecol 14:165–173. doi: 10.1016/j.baae.2012.12.009 CrossRefGoogle Scholar
  32. Lumsden LF, Bennett AF (2005) Scattered trees in rural landscapes: foraging habitat for insectivorous bats in south-eastern Australia. Biol Conserv 122:205–222. doi: 10.1016/j.biocon.2004.07.006 CrossRefGoogle Scholar
  33. Masing M, Keppart V, Lutsar L, Lotman K (2008) Action plan for the conservation management of bats 2005–2009. Estonian Theriological Society, TallinnGoogle Scholar
  34. Mickleburgh S, Hutson A, Racey P (2002) A review of the global conservation status of bats. Oryx 36:18–34. doi: 10.1017/S0030605301000011 CrossRefGoogle Scholar
  35. Mitchell-Jones AJ (1999) The atlas of European mammals. T & AD Poyser, LondonGoogle Scholar
  36. Morris AD, Miller DA, Kalcounis-Rueppell MC (2009) Use of forest edges by bats in a managed pine forest landscape. J Wildl Manag 74:26–34. doi: 10.2193/2008-471 CrossRefGoogle Scholar
  37. Oprea M, Mendes P, Vieira TB, Ditchfield AD (2009) Do wooded streets provide connectivity for bats in an urban landscape? Biodivers Conserv 18:2361–2371. doi: 10.1007/s10531-009-9593-7 CrossRefGoogle Scholar
  38. Palo A, Ivask M, Liira J (2013) Biodiversity composition reflects the history of ancient semi-natural woodland and forest habitats—Compilation of an indicator complex for restoration practice. Ecol Indic 34:336–344. doi: 10.1016/j.ecolind.2013.05.020 CrossRefGoogle Scholar
  39. Parsons S, Lewis KJ, Psyllakis JM (2003) Relationships between roosting habitat of bats and decay of aspen in the sub-boreal forests of British Columbia. For Ecol Manag 177:559–570. doi: 10.1016/S0378-1127(02)00448-6 CrossRefGoogle Scholar
  40. Patriquin KJ, Barclay RMR (2003) Foraging by bats in cleared, thinned and unharvested boreal forest. J Appl Ecol 40:646–657CrossRefGoogle Scholar
  41. Perry RW, Thill RE, Leslie DM (2008) Scale-dependent effects of landscape structure and composition on diurnal roost selection by forest bats. J Wildl Manag 72:913–925. doi: 10.2193/2006-435 CrossRefGoogle Scholar
  42. Psyllakis JM, Brigham RM (2006) Characteristics of diurnal roosts used by female Myotis bats in sub-boreal forests. For Ecol Manag 223:93–102. doi: 10.1016/j.foreco.2005.03.071 CrossRefGoogle Scholar
  43. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171. doi: 10.1126/science.235.4785.167 PubMedCrossRefGoogle Scholar
  44. Ruczyński I, Nicholls B, MacLeod CD, Racey PA (2010) Selection of roosting habitats by Nyctalus noctula and Nyctalus leisleri in Białowieża forest-adaptive response to forest management? For Ecol Manag 259:1633–1641CrossRefGoogle Scholar
  45. Russ J (2012) British bat calls: a guide to species identification. Pelagic Pub, ExeterGoogle Scholar
  46. Russo D, Jones G, Migliozzi A (2002) Habitat selection by the mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: rhinolophidae) in a rural area of southern Italy and implications for conservation. Biol Conserv 107:71–81. doi: 10.1016/S0006-3207(02)00047-2 CrossRefGoogle Scholar
  47. Safi K, König B, Kerth G (2007) Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzerland and their consequences for conservation. Biol Conserv 137:28–36. doi: 10.1016/j.biocon.2007.01.011 CrossRefGoogle Scholar
  48. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32. doi: 10.1111/j.1523-1739.1991.tb00384.x CrossRefGoogle Scholar
  49. Skalak SL, Sherwin RE, Brigham RM (2012) Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol Evol 3:490–502. doi: 10.1111/j.2041-210X.2011.00177.x CrossRefGoogle Scholar
  50. Skiba R (2003) Europäische Fledermäuse : Kennzeichen. Echoortung und Detektoranwendung, WestarpGoogle Scholar
  51. Threlfall CG, Law B, Banks PB (2012) Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape. PLoS ONE 7:e38800. doi: 10.1371/journal.pone.0038800 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Tupinier Y (1997) European bats: their world of sound. société linnéenne de lyonGoogle Scholar
  53. Vandekerkhove K, De Keersmaeker L, Walleyn R et al (2011) Reappearance of old-growth elements in lowland woodlands in northern belgium: do the associated species follow? Silva Fenn 45:909–935CrossRefGoogle Scholar
  54. Verboom B, Huitema H (1997) The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landsc Ecol 12:117–125CrossRefGoogle Scholar
  55. Walsh A, Harris S (1996) Foraging habitat preferences of vespertilionid bats in Britain. J Appl Ecol 33:508–518. doi: 10.2307/2404980 CrossRefGoogle Scholar
  56. Zobel M (1997) The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269. doi: 10.1016/S0169-5347(97)01096-3

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rauno Kalda
    • 1
    Email author
  • Oliver Kalda
    • 1
  • Kertu Lõhmus
    • 1
  • Jaan Liira
    • 1
  1. 1.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations