Biodiversity and Conservation

, Volume 23, Issue 10, pp 2561–2577 | Cite as

Spider diversity in epiphytes: Can shade coffee plantations promote the conservation of cloud forest assemblages?

Original Paper


Cloud forests (CF) are disappearing due to anthropogenic causes such as cultivation. A characteristic feature of the CF is that a high proportion of its biomass occurs in the form of epiphytes, which are vital microhabitats to canopy dwelling arthropods. Coffee plantations overlap with CF and replace them. Epiphytes are abundant in shade coffee (SC) plantations and therefore these plants are an appropriate background for comparing the diversity between these systems. Spiders are understudied in canopies, and since they are major predators and their communities are highly sensitive to environmental changes, they can be used to test the similarity between habitats. We conducted a diversity assay of spiders living in epiphytes in cloud forest fragments and SC plantations, to test the hypothesis that SC plantations function as refugia. We manually sampled epiphytes within the canopy of two coffee plantations and two fragments of cloud forest in central Veracruz, Mexico. Our results show that SC plantations account for higher spider abundance and species richness than cloud forest fragments, there is little overlap between the species found in both systems, and the range of distribution and the guild structure of the spider assemblages between both systems is similar. As there were no significant differences between cloud forest fragments and SC plantations in terms of spider species assemblages, species distribution and guild structure the epiphytes from the SC plantations can be consider a refuge for the spider fauna from the surrounding cloud forest fragments. Epiphyte load and tree height are important factors driving the differentiation at community level, between sites and habitats. Bromeliads harbored more spiders than the other types of epiphytes, and since these plants are frequently removed by farmers or extracted for commercial and religious purposes, we suggest that preserving epiphytes in coffee plantations and cloud forest fragments could aid in the conservation of spiders.


Agro-ecosystem Tropical montane cloud forest Canopy Bromeliads Refugia 

Supplementary material

10531_2014_739_MOESM1_ESM.doc (211 kb)
Supplementary material 1 (DOC 211 kb)


  1. Avalos G, Rubio GD, Bar ME, Gonzáles A (2007) Arañas (Arachnidae: Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Rev Biol Trop 55(3–4):899–909PubMedGoogle Scholar
  2. Basset Y, Arthington AH (1992) The arthropod community of an Australian rainforest tree: abundance of component taxa, species richness and guild structure. Aust J Ecol 17:89–98CrossRefGoogle Scholar
  3. Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heath land management for the conservation of spider communities: a review. J Zool-Lond 255:377–387CrossRefGoogle Scholar
  4. Bloom SA (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol-Prog Ser 5:125–128CrossRefGoogle Scholar
  5. Cárdenas M, Ruano F, García P, Pascual F, Campos M (2006) Impact of agricultural management on spider populations in the canopy of olive trees. Biol Control. doi:10.1016/j.biocontrol.2006.02.004 Google Scholar
  6. Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One. doi:10.1371/journal.pone.0021710 Google Scholar
  7. Cayuela L, Golicher DJ, Rey-Benayas JM (2006) The extent, distribution, and fragmentation of vanishing montane cloud forest in the Highlands of Chiapas, Mexico. Biotropica 38:544–554CrossRefGoogle Scholar
  8. CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2010) El Bosque Mesófilo de Montaña en México: amenazas y Oportunidades para su Conservación y Manejo Sostenible. CONABIO, MéxicoGoogle Scholar
  9. Cruz-Angón A, Baena ML, Greenberg R (2009) The contribution of epiphytes to the abundance and species richness of canopy insects in a Mexican coffee plantation. J Trop Ecol. doi:10.1017/S0266467409990125 Google Scholar
  10. Dolia J, Devy MS, Aravind NA, Kumar A (2007) Adult butterfly communities in coffee plantations around a protected area in the Western Ghats, India. Anim Conserv 11:26–34. doi:10.1111/j.1469-1795.2007.00143.x CrossRefGoogle Scholar
  11. Floren A, Deeleman-Reinhold C (2005) Diversity of arboreal spiders in primary and disturbed tropical forest. J Arachnol 33:323–333CrossRefGoogle Scholar
  12. Flores-Palacios A, Valencia-Díaz S (2007) Local illegal trade reveals unknown diversity and involves a high species richness of wild vascular epiphytes. Biol Conserv 136:372–387. doi:10.1016/j.biocon.2006.12.017 CrossRefGoogle Scholar
  13. García EC, Damon A, Sánchez HC, Soto PL, Ibarra NG (2006) Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol Conserv 132:351–361. doi:10.1016/j.biocon.2006.04.027 CrossRefGoogle Scholar
  14. Greenstone MH (1999) Spider predation: how and why we study it. J Arachnol 27:333–342Google Scholar
  15. Haeckel IB (2008) The “Arco Floral”: ethnobotany of Tillandsia and Dasylirion spp. in a Mexican religious adornment. Econ Bot 62:90–95CrossRefGoogle Scholar
  16. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Elec 4:9Google Scholar
  17. Hernández-Martínez G, Manson RH, Contreras HA (2009) Quantitative classification of coffee agroecosystems spanning a range of production intensities in central Veracruz, Mexico. Agric Ecosyst Environ 134:89–98. doi:10.1016/j.agee.2009.05.020 CrossRefGoogle Scholar
  18. Hietz P, Hietz-Seifert U (1995) Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. J Veg Sci 6:719–728CrossRefGoogle Scholar
  19. Jocqué R, Samu F, Bird T (2005) Density of spiders (Araneae: Ctenidae) in Ivory Coast rainforest. J Zool-Lond 266:105–110. doi:10.1017/S0952836905006746 CrossRefGoogle Scholar
  20. Kapoor V (2008) Effects of rain forest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. J Insect Conserv 12:53–68. doi:10.1007/s10841-006-9062-5 CrossRefGoogle Scholar
  21. Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi:10.1007/s00442-004-1497-3 PubMedCrossRefGoogle Scholar
  22. Larrivée M, Buddle CM (2009) Diversity of canopy and understory spiders in north-temperate hardwood forests. Agric For Entomol 11:225–237. doi:10.1111/j.1461-9563.2008.00421.x CrossRefGoogle Scholar
  23. Macip-Ríos R, Casas-Andreu G (2008) Los cafetales en México y su importancia para la conservación de anfibios y reptiles. Acta Zool Mex NS 24:143–159Google Scholar
  24. Majer JD, Recher HF (1988) Invertebrate communities on Western Australian eucalypts: a comparison of branch clipping and chemical knockdown procedures. Aust J Ecol 13:269–278CrossRefGoogle Scholar
  25. Majer JD, Recher HF, Ganesh S (2000) Diversity patterns of eucalypt canopy arthropods in eastern and western Australia. Ecol Entomol 25:295–306CrossRefGoogle Scholar
  26. Manson RH, Contreras HA, López-Barrera F (2008) Estudios de la biodiversidad en cafetales. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agrosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología AC (INECOL) e Instituto Nacional de Ecología (INE-SEMARNAT), México, pp 1–14Google Scholar
  27. Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273CrossRefGoogle Scholar
  28. Megura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob Ecol Biogeogr 19:16–26. doi:10.1111/j.1466-8238.2009.00499.x CrossRefGoogle Scholar
  29. Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G (2005) Spatial distribution of Anopheline larval habitats in western Kenyan highlands: effects of land cover types and topography. Am Soc Trop Med H 73:157–165Google Scholar
  30. Pinkus RMA, Ibarra-Núñez G, Parra-Tabla V, García-Ballinas JA, Hénaut Y (2006) Spider diversity in coffee plantations with different management in southeast Mexico. J Arachnol 34:104–112CrossRefGoogle Scholar
  31. Platnick NI (2014) The World Spider Catalog, Version 14.5. The American Museum of Natural History. Accessed Jan 2014
  32. Reinert F, Fontoura T (2013) Epiphytes, in tropical biology and conservation management Volume lV in encyclopedia of life support systems (EOLSS). Developed under the Auspices of the UNESCO. EOLSS publishers, OxfordGoogle Scholar
  33. Russell-Smith A, Stork NE (1995) Composition of spider communities in the canopies of rainforest trees in Borneo. J Trop Ecol 11:223–235CrossRefGoogle Scholar
  34. Rypstra AL, Carter PE, Balfour RA, Marshall SD (1999) Architectural features of agricultural habitats and their impact on the spider inhabitants. J Arachnol 27:371–377Google Scholar
  35. Silva D (1996) Species composition and community structure of Peruvian rainforest spiders: a case study from a seasonally inundated forest along the Samiria river. Rev Suisse Zool HS:597-610Google Scholar
  36. Sørensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13:437–452CrossRefGoogle Scholar
  37. Srinivasa YB, Arun KAN, Prathapan KD (2004) Canopy arthropods of Vateria indica L. and Dipterocarpus indicus Bedd. in the rainforest of Western Ghats, South India. Curr Sci 86:1420–1426Google Scholar
  38. Stenchly K, Clough Y, Tscharntke T (2012) Spider species richness in cocoa agroforestry systems, comparing vertical strata, local management and distance to forest. Agric Ecosyst Environ 149:189–194. doi:10.1016/j.agee.2011.03.021 CrossRefGoogle Scholar
  39. Stork NE (1991) The composition of the arthropod fauna of Bornean Lowland Rain Forest trees. J Trop Ecol 7(2):161–180CrossRefGoogle Scholar
  40. Stuntz S (2001) The influence of epiphytes on arthropods in the tropical forest canopy. Dissertation. Bayerischen Julius-Maximilians-Universität WürzburgGoogle Scholar
  41. Stuntz S, Ziegler C, Simon U, Zotz G (2002) Diversity and structure of the arthropod fauna whiting three canopy epiphyte species in central Panama. J Trop Ecol 18:161–176CrossRefGoogle Scholar
  42. Toledo-Aceves T, Klaus M, García-Franco JG, Hernández-Rojas A-, Sosa VJ (2013) Benefits and costs of epiphyte management in the shade coffee plantations. Agric Ecosyst Environ 181:149–156CrossRefGoogle Scholar
  43. Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6:283–290CrossRefGoogle Scholar
  44. Tovar-Sánchez E, Cano-Santana Z, Oyama K (2003) Canopy arthropod communities on Mexican oaks at sites with different disturbance regimes. Biol Conserv 115:79–87. doi:10.1016/S0006.3207(03)00096-X CrossRefGoogle Scholar
  45. Ubick D, Paquin P, Cushing PE, Roth V (ed) (2005) Spiders of North America: an identification manual. American Arachnological SocietyGoogle Scholar
  46. Williams-Linera G, Manson RH, Isunza VE (2002) La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera y Bosques 8:73–89Google Scholar
  47. Wolf JHD, Konings CJF (2001) Toward the sustainable harvesting of epiphytic bromeliads: a pilot study from the highlands of Chiapas, Mexico. Biol Conserv 101:23–31CrossRefGoogle Scholar
  48. Yanoviak SP, Kragh G, Nadkarni NM (2003) Spider assemblages in Costa Rican Cloud Forest: effects of forest level and forest age. Stud Neotrop Fauna E 38:145–154CrossRefGoogle Scholar
  49. Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Francisco Emmanuel Méndez-Castro
    • 1
  • Dinesh Rao
    • 1
  1. 1.Instituto de Biotecnología y Ecología Aplicada (INBIOTECA)Universidad VeracruzanaXalapaMexico

Personalised recommendations