Advertisement

Biodiversity and Conservation

, Volume 23, Issue 9, pp 2321–2343 | Cite as

Recommended guiding principles for reporting on camera trapping research

  • P. D. Meek
  • G. Ballard
  • A. Claridge
  • R. Kays
  • K. Moseby
  • T. O’Brien
  • A. O’Connell
  • J. Sanderson
  • D. E. Swann
  • M. Tobler
  • S. Townsend
Review Paper

Abstract

Camera traps are used by scientists and natural resource managers to acquire ecological data, and the rapidly increasing camera trapping literature highlights how popular this technique has become. Nevertheless, the methodological information reported in camera trap publications can vary widely, making replication of the study difficult. Here we propose a series of guiding principles for reporting methods and results obtained using camera traps. Attributes of camera trapping we cover include: (i) specifying the model(s) of camera traps(s) used, (ii) mode of deployment, (iii) camera settings, and (iv) study design. In addition to suggestions regarding best practice data coding and analysis, we present minimum principles for standardizing information that we believe should be reported in all peer-reviewed papers. Standardised reporting enables more robust comparisons among studies, facilitates national and global reviews, enables greater ease of study replication, and leads to improved wildlife research and management outcomes.

Keywords

Remote cameras Trail cameras Camera trap guidelines Ecological monitoring Camera trap methodology 

Notes

Acknowledgments

We would like to recognise the role of the following organisations whose support helped augment the preparation of this manuscript; The Winston Churchill Memorial Trust, The Australasian Wildlife Management Society and the NSW Royal Zoological Society. Thank you to James D. Nichols and Andrew Bengsen who provided constructive comments on this manuscript. Marcella Kelly, Karen Hodges and an anonymous referee made several changes to this manuscript.

References

  1. Ahumada JA, Silva CEF, Gajapersad K, Hallam C, Hurtado J, Martin E, Mcwilliam A, Mugerwa A, O’Brien T, Rovero F, Sheil D, Spironello WR, Winarni N, Andelman SJ (2011) Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos Trans R Soc B 366:2703–2711CrossRefGoogle Scholar
  2. Arzberger P, Schroeder P, Beaulieu A, Bowker G, Casey K, Laaksonen L, Moorman D, Uhlir P, Wouters P (2004) An international framework to promote access to data. Science 303:1777–1778PubMedCrossRefGoogle Scholar
  3. Bengsen A, Butler J, Masters P (2011) Estimating and indexing feral cat population abundances using camera traps. Wildl Res 38:732–739CrossRefGoogle Scholar
  4. Breitenmoser U, Breitenmoser-Würsten C, Molinari P, Ryser A, von Arx M, Molinari-Jobin A, Zimmermann F, Siegenthaler A, Angst C, Weber J (2005) Balkan lynx field book. KORA and Cat Specialist GroupGoogle Scholar
  5. Carthew SM, Slater E (1991) Monitoring animal activity with automated photography. J Wildl Manag 55:689–692CrossRefGoogle Scholar
  6. Cassey P, Blackburn TM (2006) Reproducibility and repeatability in ecology. Bioscience 56:958–959CrossRefGoogle Scholar
  7. Caughley G, Sinclair ARE (1994) Wildlife ecology and management. Blackwell Science, OxfordGoogle Scholar
  8. Claridge AW, Misfud G, Dawson J, Saxon MJ (2004) Use of infrared digital cameras to investigate the behaviour of cryptic species. Wildl Res 31:645–650CrossRefGoogle Scholar
  9. Claridge AW, Paull DJ, Barry SC (2010) Detection of medium-sized ground-dwelling mammals using infrared digital cameras: an alternative way forward? Aust Mammal 32:165–171CrossRefGoogle Scholar
  10. Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review. Wildl Soc Bull 27:571–581Google Scholar
  11. De Bondi N, White JG, Stevens M, Cooke R (2010) A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities. Wildl Res 37:456–465CrossRefGoogle Scholar
  12. Engeman RM (2005) Indexing principles and a widely applicable paradigm for indexing animal populations. Wildl Res 32:203–210CrossRefGoogle Scholar
  13. Fegraus EH, Lin K, Ahumada JA, Baru C, Chandra S, Youn C (2011) Data acquisition and management software for camera trap data: a case study from the TEAM Network. Ecol Inform 6:345–353CrossRefGoogle Scholar
  14. Gerber B, Karpanty S, Kelly M (2012) Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Popul Ecol 54(1):43–54CrossRefGoogle Scholar
  15. Glen AS, Dickman CR (2003) Monitoring bait removal in vertebrate pest control: a comparison using track identification and remote photography. Wildl Res 30:29–33CrossRefGoogle Scholar
  16. Glen AS, Cockburn S, Nichols M, Ekanayake J, Warburton B (2013) Optimising camera traps for monitoring small mammals. PLoS One 8(1–7):e67940PubMedCentralPubMedCrossRefGoogle Scholar
  17. Guil F, Agudín S, El-Khadir N, Fernandez-Olalla M, Figueredo J, Domínguez F, Garzon P, Gonzalez G, Muñoz-Igualada J, Oria J, Silvestre F (2010) Factors conditioning the camera-trapping efficiency for the Iberian lynx (Lynx pardinus). Eur J Wildl Res 56:633–640CrossRefGoogle Scholar
  18. Harmsen BJ, Foster RJ, Silver SC, Ostro LET, Doncaster CP (2009) Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a Neotropical forest. J Mammal 90(3):612–620CrossRefGoogle Scholar
  19. Henschel P, Ray JC (2003) Leopards in African rainforests: survey and monitoring techniques. Wildlife Conservation Society, New YorkGoogle Scholar
  20. Hooijmans CR, de Vries R, Leenaars M, Curfs J, Ritskes-Hoitinga M (2011a) Improving planning, design, reporting and scientific quality of animal experiments by using the Gold Standard Publication Checklist, in addition to the ARRIVE guidelines. Br J Pharmacol 162:1259–1260PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hooijmans CR, De Vries R, Leenaars M, Ritskes-Hoitinga M (2011b) The gold standard publication checklist (GSPC) for improved design, reporting and scientific quality of animal studies. Lab Anim 45:61PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jackson RM, Roe JD, Wangchuk R, Hunter DO (2005) Surveying snow leopard populations with emphasis on camera trapping: a handbook. Snow Leopard conservancyGoogle Scholar
  23. Karanth KU (1995) Estimating tiger (Panthera tigris) populations from camera-trap data using capture: recapture models. Biol Conserv 71:333–338CrossRefGoogle Scholar
  24. Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862CrossRefGoogle Scholar
  25. Kays RW, Slauson KM (2008) Remote cameras. In: Long RA, MacKay P, Zielinski WJ, Ray JC (eds) Noninvasive survey methods for carnivores: methods and analyses. Island Press, WashingtonGoogle Scholar
  26. Kays R, Tilak S, Kranstauber B, Jansen PA, Carbone C, Rowcliffe JM, Fountain T, Eggert J, He Z (2010) Monitoring wild animal communities with arrays of motion sensitive camera traps. Int J Res Rev Wirel Sensor Netw 1:19–29Google Scholar
  27. Kelly MJ, Holub EL (2008) Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeast Nat 15:249–262CrossRefGoogle Scholar
  28. Kross SM, Nelson XJ (2011) A portable low-cost remote videography system for monitoring wildlife. Methods Ecol Evol 2:191–196CrossRefGoogle Scholar
  29. Larrucea ES, Brussard PF, Jaeger MM, Barrett RH (2007) Cameras, coyotes, and the assumption of equal detectability. J Wildl Manag 71:1682–1689CrossRefGoogle Scholar
  30. Legg CJ, Nagy L (2006) Why most conservation monitoring is, but need not be, a waste of time. J Environ Manag 78:194–199CrossRefGoogle Scholar
  31. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detecting probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  32. Maffei L, Noss AJ (2008) How small is too small? Camera trap survey areas and density estimates for ocelots in the Bolivian Chaco. Biotropica 40:71–75Google Scholar
  33. Magoun AJ, Valkenburg P, Pedersen DN, Long CD, Lowell RE (2011) Wolverine images: using motion detection cameras for photographing, identifying, and monitoring Wolverines. Blurb CreativeGoogle Scholar
  34. McCoy JC, Ditchkoff SS, Steury TD (2011) Bias associated with baited camera sites for assessing population characteristics of deer. J Wildl Manag 75:472–477CrossRefGoogle Scholar
  35. Meek PD (2010) Remote camera monitoring of the Hastings river mouse (Pseudomys oralis): Trial of a novel technique for monitoring populations. Unpublished Report for Gondwana Rainforests of AustraliaGoogle Scholar
  36. Meek PD, Pittet A (2012) User-based design specifications for the ultimate camera trap for wildlife research. Wildl Res 39:649–660CrossRefGoogle Scholar
  37. Meek PD, Ballard AG, Fleming PJS (2012a) An introduction to camera trapping for wildlife surveys in Australia. Invasive Animals CRC, CanberraGoogle Scholar
  38. Meek PD, Zewe F, Falzon G (2012b) Temporal activity patterns of the swamp rat (Rattus lutreolus) and other rodents in north-eastern New South Wales, Australia. Aust Mammal 34:223–233CrossRefGoogle Scholar
  39. Meek PD, Fleming PJS, Ballard G, Banks PB, Claridge AW, McMahon S, Sanderson J, Swann DE (2014) Putting contemporary camera trapping in focus. In: Meek PD, Ballard AG, Banks PB, Claridge AW, Fleming PJS, Sanderson JG, Swann DE (eds) Camera trapping in wildlife research and management. CSIRO, MelbourneGoogle Scholar
  40. Mormann B, Woods G (2010) Setting up for a Survey. In: Thomas LJ (ed) Deer Cameras - The Science of Scouting. Quality Deer Management Association, Bogart, pp 122–133Google Scholar
  41. Nelson JE, Scroggie MP (2009) Remote cameras as a mammal survey tool: survey design and practical considerations. Arthur Rylah Institute for Environmental Research Unpublished report number 2009/36. Department of Sustainability and Environment, Heidelberg, VictoriaGoogle Scholar
  42. Nichols JD, Bailey LL, O’Connell AF Jr, Talancy NW, Campbell Grant EH, Gilbert AT, Annand EM, Husband TP, Hines JE (2008) Multi-scale occupancy estimation and modelling using multiple detection methods. J Appl Ecol 45:1321–1329CrossRefGoogle Scholar
  43. Nichols JD, Karanth KU, O’Connell AF (2011) Science, conservation and camera traps. In: O’Connell AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology: methods and analyses. Springer, New YorkGoogle Scholar
  44. O’Brien TG (2011) Abundance, density and relative abundance: a conceptual framework. In: O’Connell AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology: methods and analyses. Springer, New YorkGoogle Scholar
  45. O’Brien TG, Kinnaird MF (2011) Density estimation of sympatric carnivores using spatially explicit capture–recapture methods and standard trapping grid. Ecol Appl 21:2908–2916CrossRefGoogle Scholar
  46. O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139CrossRefGoogle Scholar
  47. O’Brien TG, Baillie JEM, Krueger L, Cuke M (2010) The wildlife picture index: monitoring top trophic levels. Anim Conserv 13:335–343CrossRefGoogle Scholar
  48. O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology methods and analyses. Springer, New YorkCrossRefGoogle Scholar
  49. Organisation for Economic Co-operation and Development (OECD) (2002) Frascati manual 2002: proposed standard practice for surveys on research and experimental development. The measurement of scientific and technological activities. OECD, ParisGoogle Scholar
  50. Paull DJ, Claridge AW, Barry SC (2011) There’s no accounting for taste: bait attractants and infrared digital cameras for detecting small to medium ground-dwelling mammals. Wildl Res 38:188–195CrossRefGoogle Scholar
  51. Reif V, Tornberg R (2006) Using time-lapse digital video recording for a nesting study of birds of prey. Eur J Wildl Res 52:251–258CrossRefGoogle Scholar
  52. Roberts CW, Pierce BL, Braden AW, Lopez RR, Silvy NJ, Frank PA, Ransom D (2006) Comparison of camera and road survey estimates for white-tailed deer. J Wildl Manag 70:263–267CrossRefGoogle Scholar
  53. Rovero F, Marshall AR (2009) Camera trapping photographic rate as an index of density in forest ungulates. J Appl Ecol 46:1011–1017CrossRefGoogle Scholar
  54. Rovero F, Zimmerman F, Berzi D, Meek PD (2013) Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications Hystrix. Ital J Mammal 24:9–17Google Scholar
  55. Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45:1228–1236CrossRefGoogle Scholar
  56. Royle JA, Link WA (2006) Generalised site occupancy models allowing for false positive and false negative errors. Ecology 87:835–841PubMedCrossRefGoogle Scholar
  57. Sanderson JG, Harris G (2014) Automatic camera trap data organization, storage, and analysis without entering data by hand from a keyboard. In: Meek PD, Ballard AG, Banks PB, Claridge AW, Fleming PJS, Sanderson JG, Swann DE (eds) Camera trapping in wildlife research and management. CSIRO, MelbourneGoogle Scholar
  58. Sanderson JG, Trolle M (2005) Monitoring elusive mammals. Am Sci 93:148–155CrossRefGoogle Scholar
  59. Schipper J (2007) Camera-trap avoidance by Kinkajous (Potos flavus): rethinking the “non-invasive” paradigm. Small Carniv Conserv 36:38–41Google Scholar
  60. Séquin ES, Jaeger MM, Brussard PF, Barrett RH (2003) Wariness of coyotes to camera traps relative to social status and territory boundaries. Can J Zool 81:2015–2025CrossRefGoogle Scholar
  61. Silver S (2004) Assessing jaguar abundance using remotely triggered cameras. Wildlife Conservation Society, BronxGoogle Scholar
  62. Silver SC, Ostro LET, Marsh LK, Maffei L, Noss AJ, Kelly MJ, Wallace RB, Gomez H, Ayala G (2004) The use of camera traps for estimating jaguar (Panthera onca) abundance and density using capture/recapture analysis. Oryx 38:148–154CrossRefGoogle Scholar
  63. Smith JK, Coulson G (2012) A comparison of vertical and horizontal camera trap orientations for detection of potoroos and bandicoots. Aust Mammal 34:196–201CrossRefGoogle Scholar
  64. Sutherland WJ, Armstrong D, Butchart SHM, Earnhardt JM, Ewen J, Jamieson I, Jones CG, Lee R, Newbery P, Nichols JD, Parker KA, Sarrazin F, Seddon PJ, Shah N, Tatayah V (2010) Standards for documenting and monitoring bird reintroduction projects. Conserv Lett 3:229–235CrossRefGoogle Scholar
  65. Swann DE, Hass CC, Dalton DC, Wolf A (2004) Infrared-triggered cameras for detecting wildlife: an evaluation and review. Wildl Soc Bull 32:357–365CrossRefGoogle Scholar
  66. Swann DE, Kawanishi K, Palmer J (2011) Evaluating types and features of camera traps in ecological studies: guide for researchers. In: O’Connell AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology: methods and analyses. Springer, New YorkGoogle Scholar
  67. TeamNetwork (2011) Terrestrial vertebrate protocol implementation manual. Tropical ecology assessment and monitoring networkGoogle Scholar
  68. Tobler MW (2013) Camera Base 1.6. http://www.atrium-biodiversity.org/tools/camerabase/
  69. Tobler MW, Powell GVN (2013) Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biol Conserv 159:109–118CrossRefGoogle Scholar
  70. Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178CrossRefGoogle Scholar
  71. Wegge P, Pokheral CP, Jnawali SR (2004) Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Anim Conserv 7:251–256CrossRefGoogle Scholar
  72. Weingarth K, Zimmermann F, Knauer F, Heurich M (2013) Evaluation of six digital camera models for the use in capture-recapture sampling of Eurasian Lynx (Lynx lynx). Waldökol Landsch Forsch Naturschutz 13:87–92Google Scholar
  73. Welbourne D (2013) A method for surveying diurnal terrestrial reptiles with passive infrared automatically triggered cameras. Herpetol Rev 44:247–250Google Scholar
  74. Williams BL, Holtfreter RW, Ditchkoff SS, Grand JB (2011) Efficiency of time-lapse intervals and simple baits for camera surveys of wild pigs. J Wildl Manag 75:655–659CrossRefGoogle Scholar
  75. Wilson RR, Young JK, Shivik JA (2011) Coyote capture vulnerability relative to space use and trap density. J Wildl Manag 75:721–725CrossRefGoogle Scholar
  76. Zewe F, Meek P, Ford H, Vernes K (2014) A vertical bait station for black rats (Rattus rattus) that reduces bait take by a sympatric native rodent. Aust Mammal 36:67–73CrossRefGoogle Scholar
  77. Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U (2007) Importance of dispersal for the expansion of a Eurasian lynx (Lynx lynx) population in a fragmented landscape. Oryx 41:358–368CrossRefGoogle Scholar

Copyright information

© Her majesty the Queen in Right of Australia 2014

Authors and Affiliations

  • P. D. Meek
    • 1
    • 2
    • 3
  • G. Ballard
    • 1
    • 2
  • A. Claridge
    • 4
    • 5
  • R. Kays
    • 6
    • 7
  • K. Moseby
    • 8
  • T. O’Brien
    • 9
  • A. O’Connell
    • 10
  • J. Sanderson
    • 11
  • D. E. Swann
    • 12
  • M. Tobler
    • 13
  • S. Townsend
    • 14
  1. 1.Vertebrate Pest Research Unit, Biosecurity NSWNSW Department of Primary IndustriesCoffs HarbourAustralia
  2. 2.Environmental and Rural ScienceUniversity of New EnglandArmidaleAustralia
  3. 3.Invasive Animals CRCCoffs HarbourAustralia
  4. 4.Nature Conservation SectionNSW National Parks and Wildlife ServiceQueanbeyanAustralia
  5. 5.School of Physical, Environmental and Mathematical SciencesUniversity of New South WalesCanberraAustralia
  6. 6.North Carolina Museum of Natural HistoryRaleighUSA
  7. 7.North Carolina State UniversityRaleighUSA
  8. 8.The University of AdelaideAdelaideAustralia
  9. 9.Mpala Research CentreWildlife Conservation SocietyNanyukiKenya
  10. 10.USGS Patuxent Wildlife Research CentreLaurelUSA
  11. 11.Small Wild Cat Conservation FoundationCorralesUSA
  12. 12.Saguaro National ParkTucsonUSA
  13. 13.Institute for Conservation ResearchSan Diego Zoo GlobalEscondidoUSA
  14. 14.Wildlife Ecology and ConsultingOaklandUSA

Personalised recommendations