Climate change threatens protected areas of the Atlantic Forest

Abstract

Only 7 % of the Atlantic Forest Biodiversity Hotspot is currently protected, though it holds 18 % of all amphibian species in South America. How effective would the Atlantic Forest network of protected areas (PAs) be in a changing climate? Are there some intrinsic features of PAs that drive species loss or gain inside them? We addressed these questions by modeling the ecological niches of 430 amphibian species in the Atlantic Forest and projecting their distributions into three future climate change simulations. We then assessed changes in species richness inside PAs for different time frames and tested their significance via null model. The number of species should decline within Atlantic Forest network of PAs under changing climate conditions. Only altitude was a good predictor of species gains or lost inside PAs. Therefore, we suggest that new PAs established in highlands would be more effective to alleviate the effects of climate change on this imperiled fauna.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  2. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    PubMed  Article  Google Scholar 

  3. Araújo MB, Cabeza M, Thuiller W, Hannah H, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve selection methods. Glob Chang Biol 10:1618–1626

    Article  Google Scholar 

  4. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    PubMed Central  PubMed  Article  Google Scholar 

  5. Beresford AE, Buchanan GM, Donald PF, Butchart SHM, Fishpool LDC et al (2011) Poor overlap between the distribution of protected areas and globally threatened birds in Africa. Anim Conserv 14:99–107

    Article  Google Scholar 

  6. Buckley AH, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proc R Soc Lond B 7:1167–1173

    Article  Google Scholar 

  7. Butchart SHM, Walpole M, Collen B, van Strien A, Schanlemann JPW et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    CAS  PubMed  Article  Google Scholar 

  8. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest Hotspot. Science 323:785–789

    CAS  PubMed  Article  Google Scholar 

  9. Chape S, Harrison J, Spalding M, Lysenko I (2005) Measuring the extent and effectiveness of protected areas as an indicating for meeting global biodiversity targets. Philos Trans R Soc B 360:443–455

    CAS  Article  Google Scholar 

  10. Colwell RK, Brehm G, Cardelús CL et al (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261

    Google Scholar 

  11. D’Amen M, Bombi P, Pearman PB, Schmatz DR, Zimmermann NE, Bologna MA (2011) Will climate change reduce the efficacy of protected areas for Amphibians conservation in Italy? Biol Conserv 144:989–997

    Article  Google Scholar 

  12. Dahanukar N (2012) Badis ruber. In: IUCN 2013. IUCN Red List of threatened species. Version 2013.1. www.iucnredlist.org. Accessed on 22 Aug 2013

  13. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  14. Diniz-Filho JAF, Bini LM, Rangel TFLVB, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  15. Early R, Sax DF (2011) Analysis of climate paths reveals potential limitations on species range shifts. Ecol Lett 14:1125–1133

    PubMed  Article  Google Scholar 

  16. Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257

    Article  Google Scholar 

  17. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138

    Article  Google Scholar 

  18. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  19. Hulbert AH, White EP (2005) Disparity between range map and survey-based analyses of species richness: patterns, processes and implications. Ecol Lett 8:319–327

    Article  Google Scholar 

  20. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  21. IUCN (2013) The IUCN Red List of Threatened Species. Version 2012.2. http://www.iucnredlist.org. Accessed on 22 August 2013

  22. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160

    PubMed  Article  Google Scholar 

  23. Jekins CN, Joppa L (2009) Expansion of the global terrestrial protected area system. Biol Conserv 142:2166–2174

    Article  Google Scholar 

  24. Joppa L, Pfaff A (2011) Global protected area impacts. Proc Biol Sci 278:1633–1638

    PubMed Central  PubMed  Article  Google Scholar 

  25. Klorvuttimontara S, McClean CJ, Hill JK (2011) Evaluating the effectiveness of protected areas for conserving tropical forest butterflies of Thailand. Biol Conserv 144:2534–2540

    Article  Google Scholar 

  26. Ladle RJ, Whittaker RJ (eds) (2011) Conservation biogeography. Wiley-Blackwell, Oxford

    Google Scholar 

  27. Lawler JJ, Shafer SL, White D, Kareiva P, Maurer EP, Blaustein AR, Bartlein PJ (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90:588–597

    PubMed  Article  Google Scholar 

  28. Lawler JJ, Shafer SL, Bancroft BA, Blaustein AR (2010) Projected climate impacts for the amphibians of the western hemisphere. Conserv Biol 24:38–50

    PubMed  Article  Google Scholar 

  29. Lawler JJ, Wiersma YF, Huettmann F (2011) Using species distribution models for conservation planning and ecological forecasting. In: Drew A, Wiersma YF, Huettmann F (eds) Predictive modeling in landscape ecology, 1st edn. Springer, New York, pp 271–290

    Google Scholar 

  30. Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8:e54323

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131:433–445

    Article  Google Scholar 

  32. Liu C, White M, Newel G (2011) Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34:232–243

    CAS  Article  Google Scholar 

  33. Loyola RD, Lemes P, Faleiro FV, Trindade-Filho J, Machado RB (2012) Severe loss of suitable climatic conditions for marsupial species in Brazil: challenges and opportunities for conservation. PLoS ONE 7:e46257

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Loyola RD, Lemes P, Brum FT, Provete DB, Duarte LDS (2013a) Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography. doi:10.1111/j.1600-0587.2013.00396.x

    Article  Google Scholar 

  35. Loyola RD, Lemes P, Nabout JC, Trindade-Filho J, Sagnori MD, Dobrovolski R, Diniz-Filho JAF (2013b) A straightforward conceptual approach for evaluating spatial conservation priorities under climate change. Biodiver Conserv 22:483–495

    Article  Google Scholar 

  36. Massot M, Clobert J, Ferrière R (2008) Climate warming, dispersal inhibition and extinction risk. Glob Change Biol 14:461–469

    Article  Google Scholar 

  37. Mazaris AD, Papanikolaou AD, Barbet-Massin M, Kallimanis AS, Jiguet F et al (2013) Evaluating the connectivity of a protected areas’ network under the prism of global change: the efficiency of the european natura 2000 network for four birds of prey. PLoS ONE 8:e50640

    Article  Google Scholar 

  38. Moilanen A, Wilson KA, Possingham HP (2009) Spatial conservation prioritization: quantitative methods and computational tools, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  39. Monzón J, Moyer-Horner L, Palamar MB (2011) Climate change and species range dynamics in protected area. Bioscience 61:752–761

    Article  Google Scholar 

  40. Munguía M, Rahbek C, Rangel TF et al (2012) Equilibrium of global amphibian species distributions with climate. PLoS One 7:e34420

    Google Scholar 

  41. Nori J, Urbina-Cardona JN, Loyola RD, Lescano JN, Leynaud GC (2011) Climate change and American bullfrog invasion: what could we expect in South America? PLoS ONE 6:e25718

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberón J et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    CAS  PubMed  Article  Google Scholar 

  43. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E et al (2011) In: Horn HS, Levin SA (eds) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  44. Pounds JA, Bustamente MR, Coloma LA, Consuegra JA, Fodgen MPL et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    CAS  PubMed  Article  Google Scholar 

  45. Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126

    Article  Google Scholar 

  46. Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in Macroecology. Ecography 33:46–50

    Article  Google Scholar 

  47. Ribeiro MC, Metzer JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  48. Rodrigues ASL, Andelman SL, Bakarr MI, Boitani L, Brooks TM et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    CAS  PubMed  Article  Google Scholar 

  49. Shoo LP, Storlie C, Vanderwal J, Little J, Williams SE (2010) Target protection and restoration to conserve tropical biodiversity in a warming world. Glob Change Biol 17:186–193

    Article  Google Scholar 

  50. Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates. Ecol Soc 15:8

    Google Scholar 

  51. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Google Scholar 

  52. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    PubMed  Article  Google Scholar 

  53. Therneau TM, Atkinson B (1997) An introduction to recursive partitioning using the rpart routines. Techinical Report 61, Mayo Clinic, Section of Biostatistics. Rochester, MN

  54. Tsianou MA, Azaris AD, Kallimanis AS, Deligioridi PK, Apostolopoulou E et al (2013) Identifying the criteria underlying the political decision for the prioritization of the Greek Natura 2000 conservation network. Biol Conserv 166:103–110

    Article  Google Scholar 

  55. VanDerWal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174(2):282–291

    PubMed  Article  Google Scholar 

  56. Wiens JA, Seavy NE, Jongsomjit D (2011) Protected areas in climate space: what will the future bring? Biol Conserv 144:2119–2125

    Article  Google Scholar 

  57. Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc Lond B 270:1887–1892

    Article  Google Scholar 

  58. Williams JW, Jackson ST, Kutzbach JE (2007) Projected distribution of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742

    CAS  PubMed  Article  Google Scholar 

  59. World Database on Protected Areas Consortium (2010) World database on protected areas annual release 2010 (United Nations Environment Programme, Nairobi, Kenya, and World Conservation Monitoring Centre, Cambridge, UK)

Download references

Acknowledgments

The authors acknowledge T.F. Rangel for providing access to the BioEnsembles platform used in the analyses. PL received a PhD scholarship from CNPq. RDL and ASM received research productivity fellowships granted by CNPq (Grants #304703/2011-7 and #307479/2011-0, respectively). RDL’s work is funded by the Brazilian Research Network on Global Climate Change (Rede CLIMA), Conservation International Brazil, and by Fundação Grupo O Boticário de Proteção à Natureza (Prog #08_2013). We would also like to thank two anonymous reviewers for critical comments and editing of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafael Dias Loyola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Number of Atlantic Forest amphibian species projected to be found in PAs in current time and in the future (2050) under different dispersal scenarios.(DOCX 37 kb)

Online Resource 2

Amphibian species richness patterns in the Atlantic Forest projected for the present and for future climates (for each climate models CCCMA-CGCM2, CSIRO-MK2, and HCCPR-HadCM3) by different modeling methods (Generalized Additive Models, GAM; Generalized Linear Models, GLM; Multivariate Adaptive Regression Splines, MARS; Maximum Entropy, MaxEnt; Genetic algorithm for Rule set Production, GARP; Random Forest, RF) (TIFF 1,847 kb)

Online Resource 3

Expected changes in the spatial pattern for the four climatic variables used to model species’ ecological niches in the Atlantic Forest. Maps represent the current and future conditions for CCCMA-CGCM2, CSIRO-MK2, and HCCPR-HadCM3 climate models in 2050 (TIFF 4,206 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lemes, P., Melo, A.S. & Loyola, R.D. Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23, 357–368 (2014). https://doi.org/10.1007/s10531-013-0605-2

Download citation

Keywords

  • Amphibians
  • Dispersal
  • Ecological niche models
  • Global warming
  • Reserve network