Biodiversity and Conservation

, Volume 23, Issue 2, pp 289–307 | Cite as

Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment

  • Florian ZellwegerEmail author
  • Felix Morsdorf
  • Ross S. Purves
  • Veronika Braunisch
  • Kurt Bollmann
Original Paper


Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.


Airborne laser scanning Bonasa bonasia Habitat model Mountain forest  Remote sensing Species conservation  



This study was part of a research project funded by the research programme ‘Forest and climate change’ of the Swiss Federal Inst. for Forest, Snow and Landscape Research WSL and the Federal Office for the Environment FOEN. We are grateful to the Swiss Ornithological Institute for providing the species data. Special thanks to all the people involved in the field work, namely Lisa Bitterlin, Lucretia Deplazes, Nino Maag, Lea Hofstetter, Maria Rusche, Karin Feller and Joy Coppes.

Supplementary material

10531_2013_600_MOESM1_ESM.doc (57 kb)
Online Resource 1 Description and definition of all field variables, including the sampling reference within the sampling plot. Supplementary Fig. 1 (DOC 57 kb)
10531_2013_600_MOESM2_ESM.doc (69 kb)
Online Resource 2 Detailed description and flow chart of the LiDAR data processing and variable extraction. Supplementary Fig. 2 (DOC 69 kb)
10531_2013_600_MOESM3_ESM.doc (42 kb)
Online Resource 3 Description and definition of all LiDAR variables. Supplementary Fig. 3 (DOC 42 kb)
10531_2013_600_MOESM4_ESM.doc (66 kb)
Online Resource 4 Statistical overview of field and LiDAR variables. Supplementary Fig. 4 (DOC 65 kb)
10531_2013_600_MOESM5_ESM.doc (38 kb)
Online Resource 5 Moran’s I correlogram on residuals of the combined BRT model for the analysis of potential spatial autocorrelation in the data. Supplementary Fig. 5 (DOC 38 kb)


  1. Aberg J, Swenson JE, Angelstam P (2003) The habitat requirements of hazel grouse (Bonasa bonasia) in managed boreal forest and applicability of forest stand descriptions as a tool to identify suitable patches. For Ecol Manag 175(1–3):437–444CrossRefGoogle Scholar
  2. Artuso R, Boyet S, Streilein A (2003) Practical methods for the verification of countrywide terrain and surface models. Int Arch Photogramm Remote Sens 34:1419Google Scholar
  3. Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manag 63(2–3):247–300CrossRefGoogle Scholar
  4. Bergmann H-H, Klaus S, Müller F, Scherzinger W, Swenson JE, Wiesner J (1996) Die Haselhühner—4. überarbeitete Auflage. Die neue Brehm-Bücherei Bd.77. Westarp Wissenschaften, MagdeburgGoogle Scholar
  5. Bradbury RB, Hill RA, Mason DC, Hinsley SA, Wilson JD, Balzter H, Anderson GQA, Whittingham MJ, Davenport IJ, Bellamy PE (2005) Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis 147(3):443–452CrossRefGoogle Scholar
  6. Braunisch V, Suchant R (2010) Predicting species distributions based on incomplete survey data: the trade-off between precision and scale. Ecography 33(5):826–840CrossRefGoogle Scholar
  7. Clawges RM, Vierling KT, Vierling LA, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sens Environ 112(5):2064–2073CrossRefGoogle Scholar
  8. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813PubMedCrossRefGoogle Scholar
  9. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49CrossRefGoogle Scholar
  10. Flaspohler DJ, Giardina CP, Asner GP, Hart P, Price J, Lyons CKA, Castaneda X (2010) Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biol Conserv 143(2):280–288CrossRefGoogle Scholar
  11. Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag 155(1–3):399–423CrossRefGoogle Scholar
  12. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378CrossRefGoogle Scholar
  13. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582CrossRefGoogle Scholar
  14. Goetz SJ, Steinberg D, Dubayah RO, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108(3):254–263CrossRefGoogle Scholar
  15. Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology 91(6):1569–1576PubMedCrossRefGoogle Scholar
  16. Gonseth Y, Wohlgemuth T, Sansonnens B, Buttler A (2001) Die biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien Nr. 137 Bundesamt für Umwelt, Wald und Landschaft, BernGoogle Scholar
  17. Goodwin NR, Coops NC, Bater CW, Gergel SE (2007) Assessment of sub-canopy structure in a complex coniferous forest. In: Proceedings of the ISPR Workshop “Laser Scanning 2007 and SilviLaser 2007”, Espoo, September 12–14, 2007, Finland, vol XXXVI ISSN:1682–1777, P3/W52:169–172Google Scholar
  18. Graf RF, Bollmann K, Sachot S, Suter W, Bugmann H (2006) On the generality of habitat distribution models: a case study of capercaillie in three Swiss regions. Ecography 29(3):319–328CrossRefGoogle Scholar
  19. Graf RF, Mathys L, Bollmann K (2009) Habitat assessment for forest dwelling species using LiDAR remote sensing: Capercaillie in the Alps. For Ecol Manag 257(1):160–167CrossRefGoogle Scholar
  20. Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: sata mining, inference, and prediction. Springer series in statisticsSpringer, New YorkCrossRefGoogle Scholar
  21. Hijmans RJ, Phillips SJ, Leathwick JR, Elith J (2011) Species distribution modeling (dismo). Package version 0.7–8. Accessed 20 April 2012
  22. Hill RA, Hinsley SA, Gaveau DLA, Bellamy PE (2004) Predicting habitat quality for Great Tits (Parus major) with airborne laser scanning data. Int J Remote Sens 25(22):4851–4855CrossRefGoogle Scholar
  23. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  24. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61(1):65–71CrossRefGoogle Scholar
  25. Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118(2):557–562Google Scholar
  26. Keller M (2005) Schweizerisches Landesforstinventar. Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Eidg. Forschungsanstalt WSL, BirmensdorfGoogle Scholar
  27. Klaus S, Martens J, Andreev AV, Sun Y-H (2003) Bonasa bonasia (Linnaeus, 1758). Atlas Verbr Palaearkt Vögel 20:1–15Google Scholar
  28. Larsson T-B (2001) Biodiversity evaluation tools for European forests. Ecol Bull 50:000Google Scholar
  29. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. Bioscience 52(1):19–30CrossRefGoogle Scholar
  30. Lesak AA, Radeloff VC, Hawbaker TJ, Pidgeon AM, Gobakken T, Contrucci K (2011) Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sens Environ 115(11):2823–2835CrossRefGoogle Scholar
  31. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14(4):941–950CrossRefGoogle Scholar
  32. MacKenzie DI, Nichols JD, Gideon BL, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255CrossRefGoogle Scholar
  33. Mathys L, Zimmermann NE, Zbinden N, Suter W (2006) Identifying habitat suitability for hazel grouse Bonasa bonasia at the landscape scale. Wildl Biol 12(4):357–366CrossRefGoogle Scholar
  34. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program. University of Massachusetts, Amherst. Accessed 15 Aug 2012
  35. Morsdorf F, Marell A, Koetz B, Cassagne N, Pimont F, Rigolot E, Allgöwer B (2010) Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114(7):1403–1415CrossRefGoogle Scholar
  36. Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46(4):897–905CrossRefGoogle Scholar
  37. Müller D, Schroder B, Müller J (2009a) Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J Ornithol 150(4):717–732CrossRefGoogle Scholar
  38. Müller J, Moning C, Bässler C, Heurich M, Brandl R (2009b) Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic Appl Ecol 10(7):671–681CrossRefGoogle Scholar
  39. Müller J, Stadler J, Brandl R (2010) Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. Remote Sens Environ 114(3):490–495CrossRefGoogle Scholar
  40. Noss RF (1990) Indicators for monitoring biodiversity—a hierarchical approach. Conserv Biol 4(4):355–364CrossRefGoogle Scholar
  41. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. R Development Core Team (2011) R: a language and environment for statistical computing. Package version 2.13.2. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Schäublin S, Bollmann K (2011) Winter habitat selection and conservation of Hazel Grouse (Bonasa bonasia) in mountain forests. J Ornithol 152(1):179–192. doi: 10.1007/s10336-010-0563-3 CrossRefGoogle Scholar
  44. Schönenberger W (2001) Trends in mountain forest management in Switzerland. Schweizerische Zeitschrift für Forstwesen 152:152–156CrossRefGoogle Scholar
  45. Schönenberger W (2002) Windthrow research after the 1990 storm Vivian in Switzerland: objectives, study sites, and projects. For Snow Landsc Res 77(1–2):9–16Google Scholar
  46. Seavy NE, Viers JH, Wood JK (2009) Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height. Ecol Appl 19(7):1848–1857PubMedCrossRefGoogle Scholar
  47. Simonson WD, Allen HD, Coomes DA (2012) Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests. Conserv Biol 26(5):840–850PubMedCrossRefGoogle Scholar
  48. Stöcklin J, Bosshard A, Klaus G, Rudmann-Maurer K, Fischer M (2007) Landnutzung und biologische Vielfalt in den Alpen - Thematische Synthese zum Forschungsschwerpunkt 2 “Land- und Forstwirtschaft im alpinen Lebensraum” des Nationalen Forschungungsprogramms NFP 48 “Landschaften und Lebensräume der Alpen” des Schweizerischen Nationalfonds SNF. vdf Hochschulverlag AG, ZürichGoogle Scholar
  49. Swatantran A, Dubayah R, Goetz SJ, Hofton M, Betts MG, Sun M, Simard M, Holmes R (2012) Mapping migratory bird prevalence using remote sensing data fusion. PLoS One 7(1):e28922PubMedCentralPubMedCrossRefGoogle Scholar
  50. Swenson JE (1991) Social organization of hazel grouse and ecological factors influencing it. Dissertation, University of Alberta, Edmonton, CanadaGoogle Scholar
  51. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18(6):306–314CrossRefGoogle Scholar
  52. Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM (2008) Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ 6(2):90–98CrossRefGoogle Scholar
  53. Vierling KT, Bässler C, Brandl R, Vierling LA, Weiss I, Müller J (2011) Spinning a laser web: predicting spider distributions using LiDAR. Ecol Appl 21(2):577–588PubMedCrossRefGoogle Scholar
  54. Waser LT, Ginzler C, Kuechler M, Baltsavias E, Hurni L (2011) Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from airborne digital sensor (ADS40) and RC30 data. Remote Sens Environ 115(1):76–85CrossRefGoogle Scholar
  55. Wilsey CB, Lawler JJ, Cimprich DA (2012) Performance of habitat suitability models for the endangered black-capped vireo built with remotely-sensed data. Remote Sens Environ 119:35–42CrossRefGoogle Scholar
  56. Zellweger F, Braunisch V, Baltensweiler A, Bollmann K (2013) Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. For Ecol Manag 307:303–312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Florian Zellweger
    • 1
    Email author
  • Felix Morsdorf
    • 2
  • Ross S. Purves
    • 3
  • Veronika Braunisch
    • 4
    • 5
  • Kurt Bollmann
    • 1
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  2. 2.Remote Sensing LaboratoriesDepartment of Geography, University of ZürichZürichSwitzerland
  3. 3.Department of Geography, University of ZürichZürichSwitzerland
  4. 4.Conservation Biology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  5. 5.Forest Research Institute of Baden-WürttembergFreiburgGermany

Personalised recommendations