Biodiversity and Conservation

, Volume 23, Issue 3, pp 537–554 | Cite as

Mitochondrial D-loop phylogeny signals two native Iberian red deer (Cervus elaphus) Lineages genetically different to Western and Eastern European red deer and infers human-mediated translocations

  • J. L. Fernández-García
  • J. Carranza
  • J. G. Martínez
  • E. Randi
Original Paper


Native red deer (Cervus elaphus) in Western Europe might at least partially derive from refugial populations which survived in the Iberian Peninsula during the last glacial maximum, and that expanded northwards at the onset of the Holocene. However, the phylogeny and genetic structure of red deer populations in the Iberian Peninsula are still poorly known. This study was planned, in a first step, to reconstruct the phylogenetic relationship of the main red deer populations extant in Spain by the analyses of an extensive sample of mitochondrial DNA sequences. Results indicate that sequences from these populations can be assigned to one of two deeply divergent mtDNA lineages (South-Western and Central-Eastern) with molecular divergence nearby the 2 %. In each lineage were respectively found sixteen and thirteen different haplotypes. It was evidenced that they may be allopatrically distributed in Spain with 86.6 % sequences of the South-Western lineage at the South-Western side and the 65 % sequences of Central-Eastern lineage in the Central-Eastern side. These mitochondrial lineages might have originated in two distinct refugial populations during the last glacial maximum. Genetic data also reveal instances of admixture between native populations and translocated European red deer, which belong to at least three distinct subspecies. Gene introgression was mainly due to red deer from Western European populations. The genetic contribution of red deer translocated from Eastern Europe (C. e. hippelaphus) or North Africa (C. e. corsicanus, C. e. barbarus) was apparently less deep. The extant phylogenetic relationship and evidences of genetic admixture suggest that sound conservation actions for the native Iberian red deer should severely restrict the introduction of alien red deer and, when possible, avoid admixture between the South-Western and Central-Eastern mtDNA lineages.


Cervus elaphus Conservation genetics Genetic admixture Iberian glacial refuges Iberian red deer mtDNA Native gene pools Phylogeny 



We thank Christian Oswald (Cerviden Museum, Germany) for providing museum, gardens and private sample of non-iberian red deer subspecies and J. N. Guzmán for providing samples from Cabañeros National Park. Also we thank to prof. MI Fernández and M Richman for providing language advice and corrections. Laboratory work was possible thanks to our technician MP Vivas Cedillo. Financial support came from the Spanish Ministry of Education and Science, Projects CGL2004-05993 and CGL2007-63594.

Supplementary material

10531_2013_585_MOESM1_ESM.doc (100 kb)
Supplementary material 1 (DOC 100 kb)


  1. Arroyo J, Carrión JS, Hampe A, Jordano P (2004) La distribución de las especies a diferentes escalas espacio-temporales. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF S.A., Madrid, pp 27–67Google Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkCrossRefGoogle Scholar
  3. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48PubMedCrossRefGoogle Scholar
  4. Bernard T, Gale RE, Linch DC (1996) Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. Br J Haematol 93(3):527–533PubMedCrossRefGoogle Scholar
  5. Branco M, Monnerot M, Ferrand N, Templeton AR (2002) Postglacial dispersal of the european rabbit (Oryctolagus cuniculus) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56:792–803PubMedGoogle Scholar
  6. Cabrera A (1914) Fauna Ibérica. Mamíferos: Género Cervus. Museo Nacional de Ciencias Naturales, Madrid, pp 336–344CrossRefGoogle Scholar
  7. Carranza J, Martínez JG, Sánchez-Prieto C, Fernández-García JL, Sánchez-Fernández B, Álvarez-Álvarez R, Valencia J, Alarcos S (2003) Game species: extinctions hidden by census numbers. Anim Biodivers Conserv 26(2):81–84Google Scholar
  8. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  9. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  10. Excoffier L, Laval LG, Schneider S (2005) ARLEQUIN ver. 3.0. A software for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  11. Fernández-García JL (2012) The endangered Dama dama mesopotamica Brooke, 1875: genetic variability, allelic loss and hybridization signals. Contrib Zool 81(4):223–233Google Scholar
  12. Feulner PGD, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306PubMedCrossRefGoogle Scholar
  13. Forster P, Torroni A, Renfrew C, Rhol A (2001) Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Mol Biol Evol 18:1864–1881PubMedCrossRefGoogle Scholar
  14. Geist V (1998) Deer of the world: their evolution, behaviour, and ecology. Swan Hill Press, ShrewsburyGoogle Scholar
  15. Grady JM, Quattro JM (1999) Using Character Concordance to define taxonomic and conservation Units. Conserv Biol 13(5):1004–1007CrossRefGoogle Scholar
  16. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservations. J Hered 89:415–426CrossRefGoogle Scholar
  17. Groves CP, Grubb P (1987) Relationships of living deer. In: Wemmer C (ed) Biology and management of the Cervidae. Smithsonian Institute Press, WashingtonGoogle Scholar
  18. Hajji GM, Zachos FE, Charfi-Cheikrouha F, Hartl GB (2007) Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv 10:229–235CrossRefGoogle Scholar
  19. Hajji GM, Charfi-Cheikrouha F, Lorenzini R, Vigne J-D, Hartl GB, Zachos FE (2008) Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus). Biodivers Conserv 17:659–673CrossRefGoogle Scholar
  20. Hartl GB, Zachos FE, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. C R Biol 326:S37–S42PubMedCrossRefGoogle Scholar
  21. Hartl GB, Zachos FE, Nadlinger K, Ratkiewicz M, Klein F, Lang G (2005) Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implications for management and conservation. Mamm Biol 70:24–34CrossRefGoogle Scholar
  22. Hewitt GM (2004) The structure of biodiversity: insights from molecular phylogeography. Front Zool I(4):1–16Google Scholar
  23. Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 270:479–487CrossRefGoogle Scholar
  24. Kuwayama R, Ozawa T (2000) Phylogenetic relationships among European red deer, Wapiti, and Sika deer inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 15(1):115–123PubMedCrossRefGoogle Scholar
  25. Long JD (2003) Introduced mammals of the world: their history, distribution and influence. CABI Publishing, OxonGoogle Scholar
  26. Ludt CJ, Shroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083PubMedCrossRefGoogle Scholar
  27. Martínez JG, Carranza J, Fernández-García JL, Sánchez-Prieto C (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Wildl Manag 66:1273–1282CrossRefGoogle Scholar
  28. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeGoogle Scholar
  29. Meunier K (1984) Der Spanische Rothirsch, ein sehr altes Eiszeitrelikt. Jagd und Hege 16:9–12Google Scholar
  30. Millar SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215CrossRefGoogle Scholar
  31. Moritz C (1994) Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  32. Naderi S, Rezaei H-R, Taberlet P, Zundel S, Rafat S-A et al (2007) Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One 2(10):e1012PubMedCentralPubMedCrossRefGoogle Scholar
  33. Niedziałkowska M, Jędrzejewska B, Honnen A, Thurid O, Sidorovich VE, Perzanowski K, Skog A, Hartl G, Borowik T, Bunevich A, Lang J, Zachos F (2011) Molecular biogeography of red deer Cervus elaphus from Eastern Europe: insights from mitochondrial CNA sequences. Acta Theriol 56:1–12PubMedCentralPubMedCrossRefGoogle Scholar
  34. Niedziałkowska M, Jędrzejewska B, Wojcik JM, Goodman SJ (2012) Genetic structure of red deer population in northeastern Poland in relation to the history of human interventions. J Wildlife Manag 76:1264–1276CrossRefGoogle Scholar
  35. Nussey DH, Pemberton J, Donalds A, Kruuk LEB (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97:56–65PubMedCrossRefGoogle Scholar
  36. Palsbøll PJ, Besrube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16PubMedCrossRefGoogle Scholar
  37. Pérez T, Albornoz J, Nores C, Domínguez A (1998) Evaluation of genetic variability in introduced populations of red deer (Cervus elaphus) using DNA fingerprinting. Hereditas 129:85–89PubMedCrossRefGoogle Scholar
  38. Pérez-Espona S, Pérez -Barbería FJ, Goodall-Copestake WP, Jiggins CD, Gordon IJ, Pemberton JM (2009) Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity 102:199–210PubMedCrossRefGoogle Scholar
  39. Pitra C, Fickel J, Meijaard E, Groves PC (2004) Evolution and Phylogeny of old world deer. Mol Phylogenet Evol 33:880–895PubMedCrossRefGoogle Scholar
  40. Polziehn RO, Strobeck C (2002) A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylogenet Evol 22(3):342–356PubMedCrossRefGoogle Scholar
  41. Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Res Lett 31:12–20CrossRefGoogle Scholar
  42. Posada D, Crandal KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16(1):37–45PubMedCrossRefGoogle Scholar
  43. Randi E (2005) Management of wild ungulates populations in Italy: captive-breeding hybridisation and genetic consequences of translocations. Vet Res Commun 29(Suppl 2):71–75PubMedCrossRefGoogle Scholar
  44. Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP (2001) A mitochondrial DNA CR phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim Conserv 4:1–11CrossRefGoogle Scholar
  45. Randi E, Alves C, Carranza J, Milosevic-Zlatanovic S, Sofougaris A (2004) Phylogeography of roe deer (Capreoplus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Mol Ecol 13:3071–3083PubMedCrossRefGoogle Scholar
  46. Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  48. Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140PubMedCrossRefGoogle Scholar
  49. Skog A et al (2009) Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 36:66–77CrossRefGoogle Scholar
  50. Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265CrossRefGoogle Scholar
  51. Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev 27:714–733CrossRefGoogle Scholar
  52. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the CR of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  53. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. Google Scholar
  54. Trense W (1989) The big game of the world. Paul Parey, HamburgGoogle Scholar
  55. Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P, Chamberlain AT, Sykes BC, Bradley DG (2001) Genetic evidence for near-Eastern origins of European cattle. Nature 410:1088–1091PubMedCrossRefGoogle Scholar
  56. Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373PubMedCrossRefGoogle Scholar
  57. Zachos FE, Hartl GB (2011) Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mamm Rev 41(2):138–150CrossRefGoogle Scholar
  58. Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from mircosatellites and mitochondrial DNA. Mamm Biol 68:284–298CrossRefGoogle Scholar
  59. Zachos FE, Althoff C, Steynitz YV, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67CrossRefGoogle Scholar
  60. Zachos FE, Hajji GM, Hmwe SS, Hartl GB, Lorenzini R, Mattioli S (2009) Population viability analysis and genetic diversity of the endangered red deer population from Mesola, Italy. Wildl Biol 15:175–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. L. Fernández-García
    • 1
  • J. Carranza
    • 2
  • J. G. Martínez
    • 3
  • E. Randi
    • 4
  1. 1.Genetic and Animal BreedingUniversidad de ExtremaduraCáceresSpain
  2. 2.Biology and EthologyUniversidad de ExtremaduraCáceresSpain
  3. 3.Animal BiologyUniversidad de GranadaGranadaSpain
  4. 4.Laboratorio di geneticaIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Ozzano EmiliaItaly

Personalised recommendations