Advertisement

Biodiversity and Conservation

, Volume 22, Issue 12, pp 2767–2783 | Cite as

Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot

  • Pedro V. EisenlohrEmail author
  • Luciana F. Alves
  • Luís Carlos Bernacci
  • Maíra C. G. Padgurschi
  • Roseli B. Torres
  • Eduardo M. B. Prata
  • Flavio Antonio M. dos Santos
  • Marco Antônio Assis
  • Eliana Ramos
  • André Luís C. Rochelle
  • Fernando R. Martins
  • Mariana C. R. Campos
  • Fernando Pedroni
  • Maryland Sanchez
  • Larissa S. Pereira
  • Simone A. Vieira
  • José Ataliba M. A. Gomes
  • Jorge Y. Tamashiro
  • Marcos A. S. Scaranello
  • Cora J. Caron
  • Carlos Alfredo Joly
Original Paper

Abstract

The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10–1,093 m a.s.l.) in the Atlantic Rainforest—a top hotspot for biodiversity conservation—and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest.

Keywords

Atlantic Rainforest Conservation hotspot Multivariate analysis Species distribution Species richness 

Notes

Acknowledgments

We thank the BIOTA/FAPESP Program for supporting the BIOTA Functional Gradient Project (Atlantic Ombrophyllous Dense Forest: Floristic Composition, Structure and Functioning within the “Serra do Mar” State Park, Brazil FAPESP Grants); the Graduate Programs in Plant Biology and Ecology at UNICAMP; CNPq for the PhD scholarship granted to the first author; and CNPq, CAPES and FAPESP for Grants awarded to the other authors and researchers directly or indirectly involved with this paper.

References

  1. Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164(3 Suppl):165–184CrossRefGoogle Scholar
  2. Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691. doi: 10.1016/j.foreco.2010.05.023 CrossRefGoogle Scholar
  3. Araújo DSD, Lacerda LD (1987) A natureza das restingas. Ciência Hoje 6:42–48Google Scholar
  4. Assis MA, Prata EMB, Pedroni F, Sanchez M, Eisenlohr PV, Martins FR, Santos FAM, Tamashiro JY, Alves LF, Vieira SA, Piccolo MC, Martins SC, Camargo PB, Carmo JB, Simões E, Joly CA (2011) Florestas de restinga e de terras baixas na planície costeira do sudeste do Brasil: vegetação e heterogeneidade ambiental. Biota Neotrop 11:103–121. doi: 10.1590/S1676-06032011000200012 CrossRefGoogle Scholar
  5. Auerbach M, Shmida A (1993) Vegetation change along an altitudinal gradient on Mt Hermon, Israel—no evidence for discrete communities. J Ecol 81:25–33CrossRefGoogle Scholar
  6. Austin MP, Greig-Smith P (1968) The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J Ecol 56:827–844CrossRefGoogle Scholar
  7. Barton AM, Fetcher N, Redhead S (1989) The relationship between treefall gap size and light flux in a Neotropical rain forest in Costa Rica. J Trop Ecol 5:437–439. doi: 10.1017/S0266467400003898 CrossRefGoogle Scholar
  8. Beals EW (1969) Vegetation change along altitudinal gradients. Science 165:981–985PubMedCrossRefGoogle Scholar
  9. Bellier E, Monestiez P, Durbec JP, Candau JN (2007) Identifying spatial relationships at multiple scales: principal coordinates of neighbour matrices (PCNM) and geostatistical approaches. Ecography 30:385–399. doi: 10.1111/j.0906-7590.2007.04911.x Google Scholar
  10. Bertoncello R, Yamamoto K, Meireles LD, Shepherd GJ (2011) A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in south and southeast Brazil. Biodivers Conserv 20:3413–3433. doi: 10.1007/s10531-011-0129-6 CrossRefGoogle Scholar
  11. Bohlman SA, Laurance WF, Laurance SG, Nascimento HEM, Fearnside PM, Andrade A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. J Veg Sci 19:863–874. doi: 10.3170/2008-8-18463 CrossRefGoogle Scholar
  12. Bourgeron PS (1983) Spatial aspects of vegetation structure. In: Golley FB (ed) Ecosystems of the world: tropical rain forest ecosystems, structure and function. Elsevier, Amsterdam, pp 29–47Google Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  14. Caiafa AN, Martins FR (2010) Forms of rarity of tree species in the southern Brazilian Atlantic rainforest. Biodivers Conserv 19:2597–2618. doi: 10.1007/s10531-010-9861-6 CrossRefGoogle Scholar
  15. César O, Monteiro R (1995) Florística e fitossociologia de uma floresta de restinga em Picinguaba (Parque Estadual da Serra do Mar), Município de Ubatuba-SP. Naturalia 20:89–105Google Scholar
  16. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1309PubMedCrossRefGoogle Scholar
  17. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. doi: 10.1046/j.1466-822X.2003.00322.x CrossRefGoogle Scholar
  18. Diniz-Filho JA, Rangel TFLVB, Bini LM (2008) Model selection and information theory in geographical ecology. Glob Ecol Biogeogr 17:479–488. doi: 10.1111/j.1466-8238.2008.00395.x CrossRefGoogle Scholar
  19. Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210. doi: 10.1111/j.1600-0706.2011.19563.x CrossRefGoogle Scholar
  20. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015 CrossRefGoogle Scholar
  21. Eisenlohr PV (2013) Challenges in data analysis: pitfalls and suggestions for a statistical routine in vegetation ecology. Braz J Bot. doi: 10.1007/s40415-013-0002-9 Google Scholar
  22. Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  23. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Miss Bot Gard 75:1–34CrossRefGoogle Scholar
  24. Givnish TJ (1999) On the causes of gradients in tropical tree diversity. J Ecol 87:193–210. doi: 10.1046/j.1365-2745.1999.00333.x CrossRefGoogle Scholar
  25. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  26. Gotelli NJ, Entsminger GL (2004) EcoSim: null models software for ecology. Version 7.71. http://together.net/~gentsmin/ecosim.htm. Accessed 12 Nov 2012
  27. Guerra TNF, Rodal MJN, Lins e Silva ACB, Alves M, Silva MAM, Mendes PGA (2013) Influence of edge and topography on the vegetation in an Atlantic Forest remnant in northeastern Brazil. J For Res 18:200–208. doi: 10.1007/s10310-012-0344-3 CrossRefGoogle Scholar
  28. He J-S, Chen W-L (1997) A review of gradient changes in species diversity of land plant communities (In Chinese with an English summary). Act Ecol Sin 17:91–99Google Scholar
  29. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climat 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  30. Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368PubMedCrossRefGoogle Scholar
  31. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  32. Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106:211–232. doi: 10.1016/0022-1694(89)90073-5 CrossRefGoogle Scholar
  33. IBGE (2012) Manual Técnico da Vegetação Brasileira. IBGE, Rio de JaneiroGoogle Scholar
  34. Ivanauskas NM, Monteiro R, Rodrigues RR (2000) Similaridade florística entre áreas de Floresta Atlântica no estado de São Paulo. Braz J Ecol 1(2):71–81Google Scholar
  35. Ivanauskas NM, Rodrigues RR, Souza VC (2006) Restoration Methodology: the importance of the regional floristic diversity for the forest restoration successfulness. In: Rodrigues RR, Martins SV, Gandolfi S (eds) High diversity forest restoration in degraded areas. Nova Science Publishers, New York, pp 63–76Google Scholar
  36. Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurschi MC, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira AS, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145. doi: 10.1590/S1676-06032012000100012 CrossRefGoogle Scholar
  37. Körner C (2007) The use of ‘altitude’ in ecological research. Trop Ecol Evol 22:569–574. doi: 10.1016/j.tree.2007.09.006 CrossRefGoogle Scholar
  38. Laurance WF (2001) Fragmentation and plant communities: synthesis and implications for landscape management. In: Bierregaard RO Jr, Gascon C, Lovejoy TE, Mesquita RCG (eds) Lessons from Amazonia: the ecology and conservation of a fragmented forest. Yale University Press, New Haven, pp 158–168Google Scholar
  39. Laurance WF (2009) Conserving the hottest of the hotspots. Biol Conserv 142:1137. doi: 10.1016/j.biocon.2008.10.011 CrossRefGoogle Scholar
  40. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier Science BV, AmsterdamGoogle Scholar
  41. Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152CrossRefGoogle Scholar
  42. Lomolino MV (2001) Elevation gradients of species density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. doi: 10.1046/j.1466-822x.2001.00229.x CrossRefGoogle Scholar
  43. Marques MCM, Swaine MD, Liebsch D (2011) Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic Forest. Biodivers Conserv 20:153–168. doi: 10.1007/s10531-010-9952-4 CrossRefGoogle Scholar
  44. Martins FR (1991) Estrutura de uma floresta mesófila. Editora da UNICAMP, CampinasGoogle Scholar
  45. McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden BeachGoogle Scholar
  46. McCune B, Mefford MJ (2011) PC-ORD—multivariate analysis of ecological data, version 6.0. MjM Software Design, Gleneden BeachGoogle Scholar
  47. Meireles LD, Shepherd GJ, Kinoshita LS (2008) Variações na composição florística e na estrutura fitossociológica de uma floresta ombrófila densa alto-montana na Serra da Mantiqueira, Monte Verde, MG. Rev Bras Bot 31:559–574. doi: 10.1590/S0100-84042008000400003 CrossRefGoogle Scholar
  48. Morellato LPC, Talora DC, Takahashi A, Bencke CC, Romera EC, Ziparro VP (2000) Phenology of Atlantic Rain Forest trees: a comparative study. Biotropica 32:811–823. doi: 10.1111/j.1744-7429.2000.tb00620.x CrossRefGoogle Scholar
  49. Moreno MR, Nascimento MT, Kurtz BC (2003) Estrutura e composição florística do estrato arbóreo em duas zonas altitudinais na Mata Atlântica de encosta da região de Imbé, RJ. Acta Bot Bras 17:371–386. doi: 10.1590/S0102-33062003000300005 CrossRefGoogle Scholar
  50. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  51. O’Brien EM, Field R, Whittaker RJ (2000) Climatic gradients in woody plant (tree and shrub) diversity: water–energy dynamics, residual variation, and topography. Oikos 89:588–600. doi: 10.1034/j.1600-0706.2000.890319.x CrossRefGoogle Scholar
  52. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil, and the influence of climate. Biotropica 32:793–810. doi: 10.1111/j.1744-7429.2000.tb00619.x Google Scholar
  53. Paz H, Martínez-Ramos M (2003) Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology 84:439–450. doi: 10.1890/0012-9658(2003) CrossRefGoogle Scholar
  54. Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2007) Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil. Biodivers Conserv 16:1761–1784. doi: 10.1007/978-1-4020-6444-9_13 CrossRefGoogle Scholar
  55. Ponçano WL, Carneiro CDR, Bistrichi CA, Almeida FFM, Prandini FL (1981) Mapa Geomorfológico do estado de São Paulo, vol 1. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São PauloGoogle Scholar
  56. Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566. doi: 10.2307/3237007 CrossRefGoogle Scholar
  57. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205. doi: 10.1111/j.1600-0587.1995.tb00341.x CrossRefGoogle Scholar
  59. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50. doi: 10.1111/j.1600-0587.2009.06299.x CrossRefGoogle Scholar
  60. Rey Benayas JM, Scheiner SM (2002) Plant diversity, biogeography and environment in Iberia: patterns and possible causal factors. J Veg Sci 13:245–258. doi: 10.1111/j.1654-1103.2002.tb02045.x CrossRefGoogle Scholar
  61. Ribeiro MC, Martensen AC, Metzer JP, Tabarelli M, Scarano F, Fortin MJ (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Heidelberg, pp 405–434Google Scholar
  62. Rodrigues RR, Shepherd GJ. 1992. Análise de variação estrutural e fisionômica da vegetação e características edáficas, num gradiente altitudinal na Serra do Japi. In: Morellato LPC (org). História natural da Serra do Japi. Editora da UNICAMP, Campinas, pp 64–93Google Scholar
  63. Runkle JR (1982) Patterns of disturbance in some old-growth mesic forests of North America. Ecology 63:1533–1556. doi: 10.2307/1938878 CrossRefGoogle Scholar
  64. Sanchez M, Pedroni F, Eisenlohr PV, Oliveira-Filho AT (2013) Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, Southeastern Brazil, from near sea level to 1000 m of altitude. Flora 208:184–196. doi: 10.1016/j.flora.2013.03.002 CrossRefGoogle Scholar
  65. Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol 2:409–428. doi: 10.1002/ece3.91 PubMedCrossRefGoogle Scholar
  66. Scudeller VV, Martins FR, Shepherd GJ (2001) Distribution and abundance of arboreal species in the Atlantic ombrophilous dense forest in southeastern Brazil. Plant Ecol 80:705–717. doi: 10.1023/A:1011494228661 Google Scholar
  67. Simberloff D (1983) Competition theory, hypothesis-testing, and other community ecology buzzwords. Am Nat 122:626–635CrossRefGoogle Scholar
  68. Siqueira MF (1994) Análise florística e ordenação de espécies arbóreas da Mata Atlântica através de dados binários. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  69. Sklenárˇ P, Bendix J, Balslev H (2008) Cloud frequency correlates to plant species composition in the high Andes of Ecuador. Basic Appl Ecol 9:504–513. doi: 10.1016/j.baae.2007.09.007 CrossRefGoogle Scholar
  70. Sousa Neto E, Carmo JB, Keller M, Martins SC, Alves LF, Vieira SA, Piccolo MC, Camargo P, Couto HTZ, Joly CA, Martinelli LA (2011) Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 8:733–742. doi: 10.5194/bg-8-733-2011 CrossRefGoogle Scholar
  71. Tabarelli M, Mantovani W (1999) A riqueza de espécies arbóreas na floresta atlântica de encosta no estado de São Paulo (Brasil). Rev Bras Bot 22:217–223. doi: 10.1590/S0100-84041999000200012 CrossRefGoogle Scholar
  72. Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340. doi: 10.1016/j.biocon.2010.02.005 CrossRefGoogle Scholar
  73. Terborgh J (1992) Diversity and the tropical rain forests. Scientific American Library, New YorkGoogle Scholar
  74. The R Foundation for Statistical Computing (2012) R: a language and environment for statistical computing. Vienna (Austria). http://www.R-project.org/. Accessed 15 Dec 2012
  75. Vázquez JAG, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán, Jalisco, México. J Ecol 86:999–1020. doi: 10.1046/j.1365-2745.1998.00325.x CrossRefGoogle Scholar
  76. Vieira SA, Alves LF, Duarte-Neto PJ, Martins SC, Veiga LG, Scaranello MA, Picollo MC, Camargo PB, Carmo JB, Neto ES, Santos FAM, Joly CA, Martinelli LA (2011) Stocks of carbon and nitrogen and partitioning between above- and below-ground pools in the Brazilian coastal Atlantic Forest elevation range. Ecol Evol 1:421–434. doi: 10.1002/ece3.41 PubMedCrossRefGoogle Scholar
  77. Villela DM, Nascimento MT, De Aragão LEOC, Da Gama DM (2006) Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. J Biogeogr 33:506–516. doi: 10.1111/j.1365-2699.2005.01453.x CrossRefGoogle Scholar
  78. Whitmore TC (1996) A review of some aspects of tropical rain forest seedling ecology with suggestion for further enquiry. In: Swaine MD (ed) The ecology of tropical forest tree seedlings. UNESCO, Paris, pp 3–39Google Scholar
  79. Wilson JB, Lee WG, Mark AF (1990) Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand. Vegetatio 86:15–20. doi: 10.1007/BF00045131 CrossRefGoogle Scholar
  80. Wolf JA, Fricker GA, Meyer V, Hubbell SP, Gillespie TW, Saatchi SS (2012) Plant species richness is associated with canopy height and topography in a neotropical. Remote Sens 4:4010–4021. doi: 10.3390/rs4124010 CrossRefGoogle Scholar
  81. Zhao C-M, Chen W-L, Tian Z-Q, Xie Z-Q (2005) Altitudinal pattern of plant species diversity in Shennongjia mountains, Central China. J Integr Plant Biol 47:1431–1449. doi: 10.1111/j.1744-7909.2005.00164.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pedro V. Eisenlohr
    • 1
    • 8
    Email author
  • Luciana F. Alves
    • 1
    • 2
  • Luís Carlos Bernacci
    • 2
  • Maíra C. G. Padgurschi
    • 1
  • Roseli B. Torres
    • 2
  • Eduardo M. B. Prata
    • 3
  • Flavio Antonio M. dos Santos
    • 1
  • Marco Antônio Assis
    • 4
  • Eliana Ramos
    • 4
  • André Luís C. Rochelle
    • 1
  • Fernando R. Martins
    • 1
  • Mariana C. R. Campos
    • 5
  • Fernando Pedroni
    • 6
  • Maryland Sanchez
    • 6
  • Larissa S. Pereira
    • 1
  • Simone A. Vieira
    • 7
  • José Ataliba M. A. Gomes
    • 2
  • Jorge Y. Tamashiro
    • 1
  • Marcos A. S. Scaranello
    • 1
  • Cora J. Caron
    • 1
  • Carlos Alfredo Joly
    • 1
  1. 1.Departamento de Biologia Vegetal, Instituto de BiologiaCP 6109, Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Centro de Pesquisa e Desenvolvimento de Recursos Genéticos VegetaisInstituto Agronômico de Campinas (IAC) CP 28CampinasBrazil
  3. 3.Programa de Pós-Graduação em BotânicaCP 478, Instituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
  4. 4.Departamento de Botânica, Instituto de Biociências de Rio ClaroCP 199, Universidade Estadual Paulista Júlio de Mesquita FilhoRio ClaroBrazil
  5. 5.School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  6. 6.Departamento de Ciências Biológicas e da SaúdeUniversidade Federal de Mato GrossoPontal do AraguaiaBrazil
  7. 7.Núcleo de Estudos e Pesquisas Ambientais (NEPAM)Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  8. 8.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations