Evaluating population connectivity for species of conservation concern in the American Great Plains

Abstract

Habitat loss and fragmentation are widely recognized as among the most important threats to global biodiversity. New analytical approaches are providing an improved ability to predict the effects of landscape change on population connectivity at vast spatial extents. This paper presents an analysis of population connectivity for three species of conservation concern [swift fox (Vulpes velox); lesser prairie-chicken (Tympanuchus pallidicinctus); massasuaga (Sistrurus catenatus)] across the American Great Plains region. We used factorial least-cost path and resistant kernel analyses to predict effects of landscape conditions on corridor network connectivity. Our predictions of population connectivity provide testable hypotheses about the location of core habitats, corridors, and barriers to movement. The results indicate that connectivity is more sensitive to a species’ dispersal ability than variation in landscape resistance to movement. Thus, it may prove difficult to optimize conservation strategies to maintain population connectivity for multiple species with disparate dispersal abilities and independent distributions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Beier P, Brost B (2010) Use of land facets to plan for climate change: conserving the arenas, not the actors. Conserv Biol 24:701–710

    PubMed  Article  Google Scholar 

  2. Beier P, Loe S (1992) In my experience: a checklist for evaluating the impacts to wildlife movement corridors. Wildl Soc Bull 20:434–440

    Google Scholar 

  3. Beier P, Penrod KL, Luke C, Spencer WD, Cabañero C (2006) South coast missing linkages: restoring connectivity to wildlands in the largest metropolitan area in the United States. In: Crooks KR, Sanjayan MA (eds) Connectivity and conservation. Cambridge University Press, Cambridge, pp 555–586

    Google Scholar 

  4. Beier P, Majka D, Bayless T (2007) Linkage designs for Arizona’s missing linkages. Arizona Game and Fish Department, Phoenix. http://corridordesign.org/linkages/arizona. Accessed Sept 2009

  5. Berger J, Cain SL, Berger KM (2006) Connecting the dots: an invariant migration corridor links the Holocene to the present. Biol Lett 2:528–531

    PubMed  Article  Google Scholar 

  6. Clark RW, Brown WS, Stechert R, Zamudio KR (2008) Integrating individual behaviour and landscape genetics: the population structure of timber rattlesnake hibernacula. Mol Ecol 17:719–730

    PubMed  Google Scholar 

  7. Compton B, McGarigal K, Cushman SA, Gamble L (2007) A resistant kernel model of connectivity for vernal pool breeding amphibians. Conserv Biol 21:788–799

    PubMed  Article  Google Scholar 

  8. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  9. Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979

    Google Scholar 

  10. Cushman SA, Landguth EL (2012a) Multi-species connectivity in the northern Rocky Mountains. Ecol Model 231:101–112

    Article  Google Scholar 

  11. Cushman SA, Landguth EL (2012b) Ecological associations, dispersal ability, and landscape connectivity in the northern Rocky Mountains. Research Paper RMRS-RP-90. U.S. Department of Agriculture, Fort Collins

  12. Cushman SA, Lewis J (2010) Movement behavior explains genetic differentiation in American black bear. Landsc Ecol 25:1613–1625

    Article  Google Scholar 

  13. Cushman SA, Schwartz MK, Hayden J, McKelvey KS (2006) Gene flow in complex landscapes: confronting models with data. Am Nat 168:486–499

    PubMed  Article  Google Scholar 

  14. Cushman SA, McKelvey KS, Schwartz MK (2009) Using empirically derived source-destination models to map regional conservation corridors. Conserv Biol 23:368–376

    PubMed  Article  Google Scholar 

  15. Cushman SA, Chase MJ, Griffin C (2010a) Mapping landscape resistance to identify corridors and barriers for elephant movement in southern Africa. In: Cushman SA, Huettman F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 349–368

    Google Scholar 

  16. Cushman SA, Compton BW, McGarigal K (2010b) Habitat fragmentation effects depend on complex interactions between population size and dispersal ability: modeling influences of roads, agriculture and residential development across a range of life-history characteristics. In: Cushman SA, Huettman F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 369–387

    Google Scholar 

  17. Cushman SA, Gutzwiller K, Evans JS, McGarigal K (2010c) The gradient paradigm: a conceptual and analytical framework for landscape ecology. In: Spatial complexity, informatics, and wildlife conservation. Springer, Japan, pp 83–108

  18. Cushman SA, Landguth EL, Flather CH (2012) Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the U.S. northern Rocky Mountains. Divers Distrib 18:873–884

    Article  Google Scholar 

  19. Cushman SA, McRae B, Adriansen F, Beier P, Shirley M, Zeller K (2013) Biological corridors and connectivity. In: MacDonald D (ed) Conservation in theory and practice, Wiley, New York

  20. Dark-Smiley DN, Keinath, DA (2003) Species assessment for swift fox (Vulpes velox) in Wyoming. United States Department of the Interior, Bureau of Land Management, Wyoming State Office, Cheyenne, Wyoming

  21. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  Google Scholar 

  22. ESRI (2008) Environmental systems research incorporated. ESRI, Redlands

  23. Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham JD (2009) Completion of the National Land Cover Database (NLCD) 1992–2001 Land cover change retrofit product: U.S. geological survey open-file report 2008–1379

  24. Haddad NM, Bowne DR, Cunningham A, Danielson BJ, Levey DJ, Sargent S, Spira T (2003) Corridor use by diverse taxa. Ecology 84:609–615

    Article  Google Scholar 

  25. Hagen CA, Giesen KM (2005) Lesser prairie-chicken (Tympanuchus pallidicinctus). In: Poole A (ed) The birds of North America online. Cornell Laboratory of Ornithology, Ithica, NY. http://bna.birds.cornell.edu/bna/species/364. Accessed 3 August 2013

  26. Harris LD, Gallagher PB (1989) New initiatives for wildlife conservation: the need for movement corridors. In: Mackintosh G (ed) Preserving communities and corridors. Defenders of Wildlife, Washington, DC, pp 11–34

    Google Scholar 

  27. Harrison S, Bruna E (1999) Habitat fragmentation and large-scale conservation: what do we know for sure. Ecography 22:225–232

    Article  Google Scholar 

  28. Hobbs RJ (1992) The role of corridors in conservation: a solution or bandwagon. Trends Ecol Evol 7:389–392

    PubMed  Article  CAS  Google Scholar 

  29. Kamler, JF, Ballard WB, Gese EM, Harrison RL, Karki SM (2004) Dispersal characteristics of swift foxes. USDA National Wildlife Research Center—Staff Publications. Paper 339

  30. Landguth EL, Hand BK, Glassy J, Cushman SA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35:9–14

    Article  Google Scholar 

  31. Li Q, Racine JS (2007) Smooth varying-coefficient nonparametric models for qualitative and quantitative data (unpublished manuscript)

  32. Mackessy SP (2005) Desert massasauga rattlesnake (Sistrurus catenatus edwardsii): a technical conservation assessment (online). USDA Forest Service, Rocky Mountain Region. http://www.fs.fed.us/r2/projects/scp/assessments/massasauga.pdf. Accessed 3 August 2013

  33. McCarthy MA, Possingham HP (2007) Active adaptive management for conservation. Conserv Biol 21:956–963

    PubMed  Article  Google Scholar 

  34. McComb BC, Zuckerburg B, Vesely D et al (2010) Monitoring animal populations and their habitats a practitioner’s guide. CRC Press, Boca Raton

    Book  Google Scholar 

  35. McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 112–119

    Google Scholar 

  36. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced at the University of Massachusetts, Amherst. www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 3 August 2013

  37. Mercure A, Ralls K, Koepfli KP, Wayne RK (1993) Genetic subdivisions among small canids: mitochondrial DNA differentiation of swift, kit, and arctic foxes. Evolution 47:1313–1328

    Article  Google Scholar 

  38. Neilson RP, Drapek RJ (1998) Potentially complex biosphere responses to transient global warming. Glob Chang Biol 4:505–521

    Article  Google Scholar 

  39. Nichols JD, Williams BK (2006) Monitoring for conservation. Trends Ecol Evol 21:668–673

    PubMed  Article  Google Scholar 

  40. Reding DM, Cushman SA, Gosselink TE, Clark WR (2013) Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landsc Ecol 28:471–486

    Article  Google Scholar 

  41. Robb LA, Schroeder MA (2005) Greater prairie-chicken (Tympanuchus cupido): a technical conservation assessment (online). USDA Forest Service, Rocky Mountain Region. http://www.fs.fed.us/r2/projects/scp/assessments/greaterprairiechicken.pdf. Accessed 3 August 2013

  42. Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: form, function, and efficacy. Bioscience 47:677–687

    Article  Google Scholar 

  43. Rudnick DA, Beier P, Cushman SA, Dieffenbach F, Epps CW, Gerber L, Hartter J, Jennes J, Kintsch J, Merelender AM, Perkl RM, Preziosi DV, Ryan SJ, Trombulak SC (2012) The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol 16:1–20

    Google Scholar 

  44. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    PubMed  Article  Google Scholar 

  45. Seoane J, Bustamante J, Diaz-Delgado RC (2005) Effect of expert opinion on the predictive ability of environmental models of bird distribution. Conserv Biol 19:512–522

    Article  Google Scholar 

  46. Shirk A, Wallin DO, Cushman SA, Rice RC, Warheit C (2010) Inferring landscape effects on gene flow: a new multi-scale model selection framework. Mol Ecol 19:3603–3619

    PubMed  Article  CAS  Google Scholar 

  47. Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20(6):1092–1107

    Google Scholar 

  48. Simberloff D, Farr JA, Cox J, Mehlman DW (1992) Movement corridors: conservation bargains or poor investments? Conserv Biol 6:493–504

    Article  Google Scholar 

  49. Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    PubMed  Article  Google Scholar 

  50. Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612

    Article  Google Scholar 

  51. Wiens JA (2001) The landscape concept of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, New York, pp 96–109

    Google Scholar 

  52. With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169

    Article  Google Scholar 

  53. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding assistance provided by the U.S. Fish and Wildlife Service through the Great Plains Landscape Conservation Cooperative and the input provided by James Broska, GPLCC Science Coordinator. We also want to thank the constructive comments provided by two anonymous reviewers that improved our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Cushman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cushman, S.A., Landguth, E.L. & Flather, C.H. Evaluating population connectivity for species of conservation concern in the American Great Plains. Biodivers Conserv 22, 2583–2605 (2013). https://doi.org/10.1007/s10531-013-0541-1

Download citation

Keywords

  • Connectivity
  • Resistant kernel
  • UNICOR
  • Swift fox
  • Lesser prairie chicken
  • Massasauga