Regional-scale modelling of the cumulative impact of wind farms on bats

Abstract

Wind farms are steadily growing across Europe, with potentially detrimental effects on wildlife. Indeed, cumulative impacts in addition to local effects should be considered when planning wind farm development at a regional scale, and mapping the potential risk to bats at this scale would help in the large-scale planning of wind turbines and focus field surveys on vulnerable areas. Although modelling offers a powerful approach to tackle this goal, its application has been thus far neglected. We developed a simple regional-scale analysis in an area of central Italy (Molise region) that is undergoing considerable wind farm development. We implemented species distribution models (SDMs) for two bat species vulnerable to wind farm impact, Nyctalus leisleri and Pipistrellus pipistrellus. We developed risk maps by overlaying SDMs for the two species with turbine locations, assessed the alteration of the landscape patterns of foraging habitat patches determined by the wind turbines, and identified highly vulnerable areas where wind farm construction would be particularly risky. SDMs were statistically robust (AUC ≥0.8 for both species) and revealed that 41 % of the region offers suitable foraging habitat for both species. These areas host over 50 % of the existing or planned wind farms, with 21 % of the turbines located within 150 m of forest edges, suggesting an increase in fatality risk. The alterations in suitable foraging patches consisted of a 7.7 % increase in the number of patches, a 10.7 % increase in the shape index, and a 8.1 % decrease in the mean patch area. The region’s western portion, which is most suitable to both species, requires careful consideration with regard to future wind farm planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AI:

Aggregation index

AUC:

Area under the receiver operating characteristic curve

AWMSI:

Area weighted mean shape index

CA:

Class area

CLC:

Corine land cover

FFT:

Fast fourier transformation

LPA:

Landscape pattern analyses

LPI:

Largest patch index

MPS:

Mean patch size

NP:

Number of patches

SDM:

Species distribution models

References

  1. Ahlén I, Bach L, Baagøe HJ, Pettersson J (2007) Bats and offshore wind turbines studied in southern Scandinavia. Swedish Environmental Protection Agency, Stockholm, Report 5571 http://www.naturvardsverket.se/bokhandeln

  2. Ahlén I, Baagøe HJ, Bach L (2009) Behavior of Scandinavian bats during migration and foraging at sea. J Mammal 90:1318–1323

    Article  Google Scholar 

  3. Anderson RP, Martínez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179

    Article  Google Scholar 

  4. Arnett EB (2005) Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of fatality search protocols, pattern of fatality, and behavioral interactions with wind turbines a final report submitted to the bats and wind energy cooperative. Bat conservation international, Austin

    Google Scholar 

  5. Bach L, Brinkmann R, Limpens H, Rahmel U, Reichenbach M and Roschen A (1999) Bewertung und planerische Umsetzung von Fledermausdaten im Rahmen der Windkraftplanung—Bremer Beiträge für Naturkunde und Naturschutz 4: 162–170

  6. Batistella M, Robeson S, Moran EF (2003) Settlement design, forest fragmentation, and landscape change in Rondônia, Amazônia. Photogramm Eng Remote Sens 69:805–812

    Google Scholar 

  7. Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal population. Conserv Biol 18:1482–1491

    Article  Google Scholar 

  8. Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nat Conserv 21:72–80

    Article  Google Scholar 

  9. Cathrine C, Spray S (2009) Bats and onshore wind farms: site-by-site assessment and post- construction monitoring protocols. In Practice 64:14–17

    Google Scholar 

  10. Ciancio O (2003) Corine land cover. In: Blasi C (ed) Ecological information in Italy. Ministero dell’ambiente e della tutela del territorio, Rome

    Google Scholar 

  11. Commission European (1993) Corine land cover guide technique. CECA-CEE-CEEA, Brussels

    Google Scholar 

  12. Davy CM, Russo D, Fenton MB (2007) Use of native woodlands and traditional olive groves by foraging bats on a Mediterranean island: consequences for conservation. J Zool Lond 273:397–405

    Article  Google Scholar 

  13. Dietz C, Von Helversen O, Nill D (2007) Handbuch der fledermäuse Europas und nordwestafrikas. Kosmos verlag, Stuttgart

    Google Scholar 

  14. EEC (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J L 206, 22/07/1992, 7–50 and its amending acts

  15. Elith J, Graham CH et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  16. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  17. Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecol 26:865–876

    Article  Google Scholar 

  18. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  19. Ferri V, Locasciulli O, Soccini C, Forlizzi E (2011) Post construction monitoring of wind farms: first records of direct impact on bats in Italy. Hystrix Ital J Mammal 22:199–203

    Google Scholar 

  20. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  21. Ficetola GF, Thuiller W, Padoa-Schioppa E (2009) From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers Distrib 15:108–116

    Article  Google Scholar 

  22. Ficetola FG, Maiorano L, Falcucci A, Dendomcker N, Boitani L, Padoa Schioppa E, Miaud C, Thuiller W (2010) Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Change Biol 16:528–537

    Article  Google Scholar 

  23. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  24. Forman RTT, Godron M (1986) Landscape ecology. John Wiley and Sons, New York

    Google Scholar 

  25. Grindal SD, Brigham RM (1999) Impacts of forest harvesting on habitat use by foraging insectivorous bats at different spatial scales. Ecoscience 6:25–34

    Google Scholar 

  26. Haines-Young R, Chopping M (1996) Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geogr 20:418–445

    Article  Google Scholar 

  27. Harbusch C, Bach L (2005) Environmental assessment studies on wind turbines and bat populations—a step towards best practice guidelines. Bat News 78:4–5

    Google Scholar 

  28. He HS, De Zonia BE, Mladenoff DJ (2000) An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecol 15:591–601

    Article  Google Scholar 

  29. Heikkinen RK, Luoto M, Virkkala R, Pearson RG, Körber J (2007) Biotic interaction improve prediction of boreal bird distribution at macro scales. Global Ecol Biogeogr 16:754–763

    Article  Google Scholar 

  30. Horn JW, Arnett EB, Kunz TH (2008) Behavioral responses of bats to operating wind turbines. J Wildlife Manage 72:123–132

    Article  Google Scholar 

  31. Hötker H, Thomsen KM, Jeromin H (2006) Impacts on biodiversity of exploitation of renewable energy sources: the example of birds and bats—facts, gaps in knowledge, demands for further research, and ornithological guidelines for the development of renewable energy exploitation. Michael-Otto-Institut im NABU, Bergenhusen

    Google Scholar 

  32. Jaberg C, Guisan A (2001) Modelling the distribution of bats in relation to land scape structure in a temperate mountain environment. J Appl Ecol 38:1169–1181

    Article  Google Scholar 

  33. Jarnevich CS, Reynolds LV (2011) Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biol Invasions 13:153–163

    Article  Google Scholar 

  34. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  35. Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  36. Johnson GD, Erickson WP (2003) Avian, bat and habitat cumulative impacts associated with wind energy development in the Columbia Plateau Eco region of eastern Washington and Oregon. Report for the Klickitat County Planning Department

  37. Johnson GD, Erickson WP, Strickland MD, Shepherd MF and Shepherd DA (2000) Avian monitoring studies at the buffalo ridge, Minnesota wind resource area: Results of a 4 year study. Unpublished report for the Northern States Power Company, Minnesota

  38. Jones G, Cooper-Bohannon R, Barlow K, and Parson K (2009) Determining the potential ecological impact of wind turbines on bat populations in Britain. Scoping and method development report. Final report. Bat Conservation Trust, University of Bristol. Bristol, UK

  39. Kunz TH et al (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  40. Larsen JK, Madsen J (2000) Effects of wind turbines and other physical elements on field utilization by pink-footed geese (Anser brachyrhynchus): a landscape perspective. Landscape Ecol 15:755–764

    Article  Google Scholar 

  41. Limpens HJGA, Kapteyn K (1991) Bats, their behaviour and linear landscape elements. Myotis 29:39–48

    Google Scholar 

  42. Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  43. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA forest service general technical report PNW-GTR-351

  44. Morris AD, Miller DA, Kalcounis-Rueppell MC (2010) Use of forest edges by bats in a managed pine forest landscape. J Wildl Manage 74:26–34

    Article  Google Scholar 

  45. Müller J, Mehr M, Bässler C, Fenton MB, Hothorn T, Pretzsch H, Klemmt HJ, Brandl R (2012) Aggregative response in bats: prey abundance versus habitat. Oecologia 169:673–684

    PubMed  Article  Google Scholar 

  46. Nicholls B, Racey PA (2006) Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav Ecol Sociobiol 61:131–142

    Article  Google Scholar 

  47. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  48. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  49. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modelling. In: Proc twenty-first int conf mach learn: 655–662

  50. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  51. Raes N, Roos MC, Slik JWF, van Loon EE, ter Steege H (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32:180–192

    Article  Google Scholar 

  52. Rahmel U, Bach L, Brinkmann R, Dense C, Limpens H, Mäscher G, Reichenbach M, Roschen A (1999) Windkraftplanung und Fledermäuse. Konfliktfelder und Hinweise zur Erfassungsmethodik—Bremer Beiträge für Naturkunde und Naturschutz, 4: 155–161

  53. Rebelo H, Jones G (2010) Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J Appl Ecol 47:410–420

    Article  Google Scholar 

  54. Rebelo H, Pedroso T, Jones G (2009) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Change Biol 16:561–576

    Article  Google Scholar 

  55. Riitters KH, O Neill RV (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol 10:23–29

    Article  Google Scholar 

  56. Rodrigues L, Bach L, Duborg-Savage MJ, Goodwin J and Harbusch C (2008) Guidelines for consideration of bats in wind farm projects. EUROBATS Publication Series No. 3 (English version). UNEP/EUROBATS Secretariat, Bonn, Germany

  57. Ruczynsky I, Bogdanowicz W (2005) Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bialowieza a primeval forest, eastern Poland. J Mammal 86:921–930

    Article  Google Scholar 

  58. Russ J (1999) The Bats of Britain and Ireland. Echolocation Calls, Sound Analysis, and Species Identification. Alana Books, Alana Ecology LTD

  59. Russo D, Jones G (2000) The two cryptic species of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) occur in Italy: evidence from echolocation and social calls. Mammalia 64:187–197

    Article  Google Scholar 

  60. Russo D, Jones G (2002) Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. J Zool Lond 258:91–103

    Article  Google Scholar 

  61. Russo D, Jones G (2003) Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography 26:197–209

    Article  Google Scholar 

  62. Russo D, Cistrone L, Jones G (2007) Emergence time in forest bats: the influence of canopy closure. Acta Oecol 31:119–126

    Article  Google Scholar 

  63. Russo D, Teixeira S, Cistrone L, Jesus J, Teixeira D, Freitas T, Jones G (2009) Social calls are subject to stabilizing selection in insular bats. J Biogeogr 36:2212–2221

    Article  Google Scholar 

  64. Russo D, Cistrone L, Garonna AP, Jones G (2010) Reconsidering the importance of harvested forests for the conservation of tree dwelling bats. Biodivers Conserv 19:2501–2515

    Article  Google Scholar 

  65. Rutledge D (2003) Landscape indices as measures of the effects of fragmentation: can pattern reflect process?. Department of Conservation, Wellington

    Google Scholar 

  66. Rydell J, Bach L, Doubourg-Savage M, Green M, Rodrigues L, Hedenström A (2010) Mortality of bats at wind turbines links to nocturnal insect migration? Eur J Wildl Res 56:823–827

    Article  Google Scholar 

  67. Rydell J, Bach L, Doubourg-Savage M, Green M, Rodrigues L, Hedenström A (2012) Bat mortality at wind turbines in north western Europe. Acta Chiropterol 12:261–274

    Article  Google Scholar 

  68. Santos H, Rodrigues L, Jones G, Rebelo H (2013) Using species distribution modelling to predict bat fatalities at wind farms. Biol Conserv 157:178–186. doi:10.1016/j.biocon.2012.06.017

    Article  Google Scholar 

  69. Sattler T, Bontadina F, Hirzel AH, Arlettaz R (2007) Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. J Appl Ecol 44:118–1199

    Article  Google Scholar 

  70. Shafer CL (1990) Nature reserves. Smithsonian Institution Press, Washington DC

    Google Scholar 

  71. Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96:1117–1127

    Article  Google Scholar 

  72. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    PubMed  Article  CAS  Google Scholar 

  73. Telleria JL (2009) Wind power plants and the conservation of birds and bats in Spain: a geographical assessment. Biodivers Conserv 18:1781–1791

    Article  Google Scholar 

  74. Verboom B, Huitema H (1997) The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecol 12:117–125

    Article  Google Scholar 

  75. Waters DA, Jones G, Furlong M (1999) Foraging ecology of Leisler’s bat Nyctalus leisleri at two sites in southern Britain. J Zool Lond 249:173–180

    Article  Google Scholar 

  76. Weller TJ, Baldwin JA (2011) Using echolocation monitoring to model bat occupancy and inform mitigation at wind energy facilities. J Wildl Manage 76:619–631

    Article  Google Scholar 

  77. Zhu G, Petersen MJ, Bu W (2012) Selecting biological meaningful environmental dimensions of low discrepancy among ranges to predict potential distribution of bean plataspid invasion. PLoS ONE 7:e46247. doi:10.1371/journal.pone.0046247

    PubMed  Article  CAS  Google Scholar 

  78. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning JC (2010) New trends in species distribution modelling. Ecography 33:985–989

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Molise regional administration for providing the maps of wind turbine locations and Inergia SpA which in 2010 partly funded FR. Thanks also go to Damiano Preatoni and an anonymous reviewer for their valuable comments on a previous ms version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Russo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 214 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roscioni, F., Russo, D., Di Febbraro, M. et al. Regional-scale modelling of the cumulative impact of wind farms on bats. Biodivers Conserv 22, 1821–1835 (2013). https://doi.org/10.1007/s10531-013-0515-3

Download citation

Keywords

  • Chiroptera
  • Energy
  • Habitat alteration
  • Maxent
  • Risk assessment
  • Species distribution models