Biodiversity and Conservation

, Volume 22, Issue 4, pp 999–1016

Endophytic fungi from Peruvian highland and lowland habitats form distinctive and host plant-specific assemblages

  • Martin Unterseher
  • Romina Gazis
  • Priscila Chaverri
  • Carlos Fernando García Guarniz
  • Diógenes Humberto Zavaleta Tenorio
Original Paper

Abstract

Biodiversity and biogeography of leaf-inhabiting endophytic fungi have not been resolved yet. This is because host specificity, life cycles and species concepts, in this heterogeneous ecological guild of plant-associated microfungi, are far from being understood. Even though it is known that culture-based collection techniques are often biased, this has been the method of choice for studying fungal endophytes. Isolation of fungal endophytes only through culture-based methods could potentially mask slow growing species as well as species with low prevalence, preventing the capture of the communities’ real diversity and composition. This bias can be partially resolved by the use of cultivation-independent approaches such as direct sequencing of plant tissue by next generation techniques. Irrespective of the chosen sampling method, an efficient analysis of community ecology is urgently needed in order to evaluate the driving forces acting on fungal endophytic communities. In the present study, endophytic ascomyceteous fungi from three different plant genera (Vasconcellea microcarpa, Tillandsia spp., and Heveabrasiliensis) distributed in Peru, were isolated through culture-based sampling techniques and sequenced for their ITS rDNA region. These data sets were used to assess host preferences and biogeographic patterns of endophytic assemblages. This study showed that the effect of the host’s genetic background (identity) has a significant effect on the composition of the fungal endophytic community. In other words, the composition of the fungal endophytic community was significantly related to their host’s taxonomic identity. However, this was not true for all endophytic groups, since we found some endophytic groups (e.g. Xylariales and Pleosporales) occurring in more than one host genus. Findings from this study promote the formulation of hypotheses related to the effect of altitudinal changes on the endophytic communities along the Eastern Andean slopes. These hypotheses and perspectives for fungal biodiversity research and conservation in Peru are addressed and discussed.

Keywords

Plant-associated microfungi Fungal biodiversity research Fungal ecology Andes-Amazon region of Peru Elevation gradient Sustainable biodiversity research 

Supplementary material

10531_2013_464_MOESM1_ESM.r (17 kb)
Supplementary material 1This file contains all statistical procedures including additional comments and explanations not mentioned in the main document. The analysis can be rerun by using the indata files from Supplementary file 3 and by adjusting all "path/to/file" in this R-source file to the needs of own computer structure (R 18 kb)
10531_2013_464_MOESM2_ESM.xls (3.2 mb)
Supplementary material 2This file contains basic output from R-analyses (e.g. subsampling of Hevea sequences, OTU clustering) and BLAST searches, as well as site characteristic. In this file the species-sample matrix was generated which was used for analysis of community ecology (XLS 3302 kb)
10531_2013_464_MOESM3_ESM.zip (215 kb)
Supplementary material 3This folder contains original ITS sequences in site-specific .fasta files and further input files (.csv) for community analysis with R (ZIP 215 kb)
10531_2013_464_MOESM4_ESM.pdf (75 kb)
Supplementary material 4This ITS tree is similar to Fig. 3 except that it lacks information of OTU abundance. Instead it provides sequence annotation for all OTUs (PDF 75 kb)

References

  1. Albrectsen BR, Björkén L, Varad A et al (2010) Endophytic fungi in European aspen (Populus tremula) leaves–diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Molec Biol 215:403–410PubMedGoogle Scholar
  3. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549PubMedCrossRefGoogle Scholar
  4. Arnold AE, Henk DA, Eells RL et al (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206PubMedCrossRefGoogle Scholar
  5. Barfuss M, Samuel R, Till W et al (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am J Bot 92:337–351PubMedCrossRefGoogle Scholar
  6. Barnard P, Brown CJ, Jarvis AM et al (1998) Extending the Namibian protected area network to safeguard hotspots of endemism and diversity. Biodivers Conserv 7:531–547CrossRefGoogle Scholar
  7. Bascom-Slack CA, Ma C, Moore E et al (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol 58:374–383PubMedCrossRefGoogle Scholar
  8. Berkov A, Feinstein J, Small J et al (2007) Yeasts isolated from neotropical wood-boring beetles in SE Peru. Biotropica 39:530–538CrossRefGoogle Scholar
  9. Bills GF, González-Menéndez V, Martín J et al (2012) Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS ONE 7:e46687PubMedCrossRefGoogle Scholar
  10. Bryant J, Lamanna C, Morlon H et al (2008) Colloquium paper: microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA 105(Suppl 1):11505–11511PubMedCrossRefGoogle Scholar
  11. Campbell WP (1956) The influence of associated microorganisms on the pathogenicity of Helminthosporium sativum. Can J Bot 34:865–874CrossRefGoogle Scholar
  12. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9CrossRefGoogle Scholar
  13. Chaverri P, Gazis R, Samuels G (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139–151PubMedCrossRefGoogle Scholar
  14. Chimey Henna CA, Holgado Rojas ME et al (2010) Los hongos comestibles silvestres y cultivados en Peru. In: Martínez-Carrera D, Curvetto N, Sobal M, Morales P, Mora VM (eds) Hacia un Desarrollo Sostenible del Sistema de Producción-Consumo de los Hongos Comestibles y Medicinales en Latinoamérica: Avances y Perspectivas en el Siglo XXI. Red Latinoamericana de Hongos Comestibles y Medicinales, Producción, Desarrollo y Consumo, pp 381–395Google Scholar
  15. Coddington J, Agnarsson I, Miller J et al (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78:573–584PubMedCrossRefGoogle Scholar
  16. Collado J, Platas G, Paulus B et al (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60:521–533PubMedCrossRefGoogle Scholar
  17. Colwell R, Coddington J (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345:101–118Google Scholar
  18. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic atrition in the wet tropics. Science 322:258–261PubMedCrossRefGoogle Scholar
  19. Cordier T, Robin C, Capdevielle X et al (2012a) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New phytol 196:510–519PubMedCrossRefGoogle Scholar
  20. Cordier T, Robin C, Capdevielle X et al (2012b) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520CrossRefGoogle Scholar
  21. Danielsen L, Thurmer A, Meinicke P et al (2012) Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2:1935–1948PubMedCrossRefGoogle Scholar
  22. de Gruyter J, Aveskamp MM, Woudenberg JHC et al (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 113:508–519PubMedCrossRefGoogle Scholar
  23. de Lima Favaro, De Melo FL, Aguilar-Vildoso CI et al (2011) Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS ONE 6:e14828CrossRefGoogle Scholar
  24. Devarajan PT, Suryanarayanan TS (2006) Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers 23:111–119Google Scholar
  25. Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi. IHW, Eching, pp 1–672Google Scholar
  26. Duke JA (1983) Carica papaya L. In: Handbook of energy crops. Unpublished. http://www.hort.purdue.edu/newcrop/duke_energy/Carica_papaya.html. Accessed Dec 2012
  27. Ellis MB (1971) Dematiaceous hyphomycetes. Oxford University Press, KewGoogle Scholar
  28. Ellis MB (1976) More dematiaceous hyphomycetes. Oxford University Press, KewGoogle Scholar
  29. Ellis MB, Ellis JP (1988) Microfungi on miscellaneous substrates: an identification handbook. Timber, PortlandGoogle Scholar
  30. Faeth SH, Saari S (2012) Fungal grass endophytes and arthropod communities: lessons from plant defence theory and multitrophic interactions. Fungal Ecol 5:364–371CrossRefGoogle Scholar
  31. Faith DP (1995) Phylogenetic pattern and the quantification of organismal biodiversity. In: Hawksworth DL (ed) Biodiversity measurement and estimation, the royal society. Chapman & Hall, London, pp 45–58Google Scholar
  32. FAOSTAT 2012. Statistical databases of the Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/home/index.html Accessed Dec 2012
  33. Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004CrossRefGoogle Scholar
  34. Gams W, Humber RA, Jaklitsch W et al (2012) Minimizing the chaos following the loss of Article 59: suggestions for a discussion. Mycotaxon 119:495–507CrossRefGoogle Scholar
  35. Ganley R, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327PubMedCrossRefGoogle Scholar
  36. Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254CrossRefGoogle Scholar
  37. Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20:3001–3013PubMedCrossRefGoogle Scholar
  38. Gazis R, Miadlikowska J, Lutzoni F et al (2012) Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: xylonomycetes. Mol Phylogenet Evol 65:294–304PubMedCrossRefGoogle Scholar
  39. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826PubMedCrossRefGoogle Scholar
  40. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  41. Helander M, Ahlholm J, Sieber TN et al (2007) Fragmented environment affects birch leaf endophytes. New Phytol 175:547–553PubMedCrossRefGoogle Scholar
  42. Hoffman M, Arnold A (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344PubMedCrossRefGoogle Scholar
  43. Hofstetter V, Buyck B, Croll D et al (2012) What if esca disease of grapevine were not a fungal disease? Fungal Divers 54:51–67CrossRefGoogle Scholar
  44. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  45. Jumpponen A, Jones K (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448PubMedCrossRefGoogle Scholar
  46. Jumpponen A, Jones K (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513PubMedCrossRefGoogle Scholar
  47. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:276–285CrossRefGoogle Scholar
  48. Ko Ko et al (2011) Fungal Divers 50:113–120CrossRefGoogle Scholar
  49. Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81:379–391Google Scholar
  50. Kubartova A, Ottosson E, Dahlberg A et al (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21:4514–4532PubMedCrossRefGoogle Scholar
  51. Kumar P (ed) (2012) The economics of ecosystems and biodiversity: ecological and economic foundations. http://www.teebtest.org/ecological-and-economic-foundations-report/. Accessed Dec 2012
  52. Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66Google Scholar
  53. Lodge DJ, Fisher PJ, Sutton BC (1996) Endophytic Fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia 88:733CrossRefGoogle Scholar
  54. Lovell S, Hamer M, Slotow R et al (2009) An assessment of the use of volunteers for terrestrial invertebrate biodiversity surveys. Biodivers Conserv 18:3295–3307CrossRefGoogle Scholar
  55. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis Version 2.75. http://mesquiteproject.org. Accessed Dec 2011
  56. Molina R, Horton TR, Trappe JM et al (2011) Addressing uncertainty: how to conserve and manage rare or little-known fungi. Fungal Ecol 4:134–146CrossRefGoogle Scholar
  57. Nilsson RH, Veldre V, Hartmann M et al (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287CrossRefGoogle Scholar
  58. Nylander JAA (2004) MrModeltest [computer program]. Version 2.1. Uppsala: Evolutionary Biology Centre, Uppsala University, by the author. http://www.abc.se/~nylander/. Accessed Dec 2012
  59. Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf. Accessed Dec 2012
  60. Osono T (2011) Diversity and functioning of fungi associated with leaf litter decomposition in Asian forests of different climatic regions. Fungal Ecol 4:375–385CrossRefGoogle Scholar
  61. Palin OF, Eggleton P, Malhi Y et al (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43:100–107CrossRefGoogle Scholar
  62. Paulus B, Gadek P, Hyde KD (2003) Estimation of microfungal diversity in tropical rainforest leaf litter using particle filtration: the effects of leaf storage and surface treatment. Mycol Res 107:748–756PubMedCrossRefGoogle Scholar
  63. Persoh D, Melcher M, Flessa F et al (2010) First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol 114:585–596PubMedCrossRefGoogle Scholar
  64. Pitman NCA, Terborgh JW, Silman MR et al (2002) A comparison of tree species diversity in two upper Amazonian forests. Ecology 83:3210–3224CrossRefGoogle Scholar
  65. Poldmaa K (2007) Records of Hypomyces, including two new species, from Chanchamayo, Peru. Mycotaxon 102:183–197Google Scholar
  66. Powell JR (2012) Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods Ecol Evol 3:1–11CrossRefGoogle Scholar
  67. Powell J, Monaghan M, Öpik M et al (2011) Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Mol Ecol 20:655–666PubMedCrossRefGoogle Scholar
  68. R Development Core Team (2012) R: a language and environment for statistical computing. http://www.R-project.org. Accessed Dec 2012
  69. Raja H, Miller A, Shearer C (2012) Freshwater ascomycetes: natipusillaceae, a new family of tropical fungi, including Natipusilla bellaspora sp. nov. from the Peruvian Amazon. Mycologia 104:569–573PubMedCrossRefGoogle Scholar
  70. Rodriguez R, White JJ, Arnold A et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  71. Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113CrossRefGoogle Scholar
  72. Samuels GJ, Ismaiel A (2009) Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 101:142–156PubMedCrossRefGoogle Scholar
  73. Scheldeman X, Willemen L, Coppens GDE et al (2007) Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodivers Conserv 16:1867–1884CrossRefGoogle Scholar
  74. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109:6241–6246PubMedCrossRefGoogle Scholar
  75. Schulz B, Wanke U, Draeger S et al (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450CrossRefGoogle Scholar
  76. Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS Biodiversity Series 9, Utrecht, pp 1–997Google Scholar
  77. Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106CrossRefGoogle Scholar
  78. Smith S, Tank D, Boulanger L et al (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS ONE 3:e3052PubMedCrossRefGoogle Scholar
  79. Sutton BC (1980) The Coelomycetes: fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, KewGoogle Scholar
  80. Swenson J, Young B, Beck S et al (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol 12:1PubMedCrossRefGoogle Scholar
  81. Tormo JR, Asensio FJ, Bills GF (2012) Manipulating filamentous fungus chemical phenotypes by growth on nutritional arrays. Methods Mol Biol 944:59–78PubMedGoogle Scholar
  82. Trutmann P (2012) The forgotten mushrooms of ancient Peru. Fungi and mountains publication series 1, Guardamunt Center Publications, Lima, pp 1–33Google Scholar
  83. U’Ren JM, Lutzoni F, Miadlikowska J et al (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914PubMedCrossRefGoogle Scholar
  84. Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)–different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113:645–654PubMedCrossRefGoogle Scholar
  85. Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 3:366–378CrossRefGoogle Scholar
  86. Unterseher M, Reiher A, Finstermeier K et al (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6:201–212CrossRefGoogle Scholar
  87. Unterseher M, Petzold A, Schnittler M (2012) Xerotolerant foliar endophytic fungi of Populus euphratica from the Tarim River basin, Central China are conspecific to endophytic ITS phylotypes of Populus tremula from temperate Europe. Fungal Divers 54:133–142CrossRefGoogle Scholar
  88. Unterseher M, Persoh D, Schnittler M (2013) Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Diversity. doi:10.1007/s13225-013-0222-0
  89. van Droogenbroeck B, Kyndt T, Maertens I et al (2004) Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor Appl Genet 108:1473–1486PubMedCrossRefGoogle Scholar
  90. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?? Systematics and the agony of choice. Biol Conserv 55:235–254CrossRefGoogle Scholar
  91. Vega FE, Goettel MS, Blackwell M et al (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159CrossRefGoogle Scholar
  92. Vrålstad T (2011) ITS, OTUs and beyond-fungal hyperdiversity calls for supplementary solutions. Mol Ecol 20:2873–2875PubMedCrossRefGoogle Scholar
  93. Wang Y, Naumann U, Wright ST et al (2012) Mvabund: an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474CrossRefGoogle Scholar
  94. White JF, Bacon CW (2012) The secret world of endophytes in perspective. Fungal Ecol 5:287–288CrossRefGoogle Scholar
  95. Zizka G, Schmidt M, Schulte K et al (2009) Chilean Bromeliaceae: diversity, distribution and evaluation of conservation status. Biodivers Conserv 18:2449–2471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martin Unterseher
    • 1
  • Romina Gazis
    • 2
  • Priscila Chaverri
    • 3
  • Carlos Fernando García Guarniz
    • 4
  • Diógenes Humberto Zavaleta Tenorio
    • 4
    • 5
  1. 1.Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University GreifswaldGreifswaldGermany
  2. 2.Biology DepartmentClark UniversityWorcesterUSA
  3. 3.Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkUSA
  4. 4.Instituto Nacional de Innovación Agraria de Amazonas–INIA, Estación Experimental ChachapoyasChachapoyasPeru
  5. 5.ChachapoyasPeru

Personalised recommendations