Skip to main content

Advertisement

Log in

Landscape context determinants to plant diversity in the permanent meadows of Southern European Alps

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In the Southern Alps, the role of landscape context on meadows plant diversity was evaluated using a multi-model information theoretic approach and five competing hypotheses of landscape context factors: habitat quality (H1), matrix quality (H2), habitat change (H3), matrix quality change (H4) and topography-environmental conditions (H5)- measured at three spatial scales (125, 250 and 500 m). Shannon diversity index and species richness represented plant diversity obtained in 34 plots (100 m2 size). Landscape context affected plant diversity measures differently. Matrix quality change at larger scale (500 m) was the most supported hypothesis explaining Shannon diversity index, while species richness responded mostly to topography-environmental conditions in the immediate surroundings (125 m). No effects of present-day habitat and matrix quality (H1 and H2) were found. Matrix quality change affected positively Shannon diversity index through an effect of landscape neighbourhood context on farming management practices. Due to the importance of exposure and inclination of slopes, topography-environmental conditions influenced species richness mostly through energy-driven processes and farming management strategies. In terms of scale, matrix quality change was the strongest hypothesis explaining Shannon diversity index at all scales, while the underlying process affecting species richness changed with scale (H5 or H3). Overall, landscape context explained only 25–28 % of the variation in plant diversity, suggesting that landscape management may support biodiversity conservation when comprised in a global strategy including farming practices. In the study area, change in landscape diversity may be a good indicator for Shannon diversity index and south-eastern facing meadows should be preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addicott JF, Aho JM, Antolin MF et al (1987) Ecological Neighborhoods - Scaling Environmental Patterns. Oikos 49:340–346

    Article  Google Scholar 

  • Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133:212–224

    Article  Google Scholar 

  • Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manage 66:912–918

    Article  Google Scholar 

  • Anderson DR, Burnham KP, White GC (2001) Kullback-Leibler information in resolving natural resource conflicts when definitive data exist. Wildlife Soc B 29:1260–1270

    Google Scholar 

  • Bailey D, Billeter R, Aviron S et al (2007) The influence of thematic resolution on metric selection for biodiversity monitoring in agricultural landscapes. Landscape Ecol 22:461–473

    Article  Google Scholar 

  • Bennie J, Hill MO, Baxter R et al (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J Ecol 94:355–368

    Google Scholar 

  • Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  • Bogaert J, Farina A, Ceulemans R (2005) Entropy increase of fragmented habitats: a sign of human impact? Ecol Indic 5:207–212

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Plant sociology. Mcgraw-Hill, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Cameron AC, Pravin KT (1998) Regression Analysis of Count Data. Cambridge University Press, New York

    Book  Google Scholar 

  • Cousins SAO (2008) The historical legacy on grassland plant diversity, in: Biodiversity and animal feed: future challenges for grassland production. Proceedings of the 22nd General Meeting of the European Grassland Federation, 9–12 June 2008, pp 881–891. Swedish University of Agricultural Sciences, Uppsala, Sweden

  • Cousins SAO (2009) Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv 142:2752–2758

    Article  Google Scholar 

  • Cousins S, Ohlson H, Eriksson O (2007) Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landscape Ecol 22:723–730

    Article  Google Scholar 

  • Dauber J, Hirsch M, Simmering D et al (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst & Environ 98:321–329

    Article  Google Scholar 

  • Dochtermann NA, Jenkins SH (2011) Developing multiple hypotheses in behavioral ecology. Behav Ecol Sociobiol 65:37–45

    Article  Google Scholar 

  • Dufour A, Gadallah F, Wagner HH et al (2006) Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration. Ecography 29:573–584

    Article  Google Scholar 

  • ESRI (2005) Environmental Systems Research Institute (ESRI)- ESRI Data ArcGIS Desktop 9.1. Redland, California, USA

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Google Scholar 

  • Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:96–106

    Google Scholar 

  • EXELIS (2009) ENVI- IDL 4.7, USA

  • FAO (1988) Soil map of the world. FAO World Soil Resources Reports

  • Fava F, Parolo G, Colombo R et al (2010) Fine-scale assessment of hay meadow productivity and plant diversity in the European Alps using field spectrometric data. Agric Ecosyst Environ 137:151–157

    Article  Google Scholar 

  • Fischer M, Rudmann-Maurer K, Weyand A et al (2008) Agricultural Land Use and Biodiversity in the Alps. MT Res Dev 28:148–155

    Article  Google Scholar 

  • Gasso N, Pino J, Font X et al (2011) Regional context affects native and alien plant species richness across habitat types. Appl Veg Sci 15:4–13

    Article  Google Scholar 

  • Glenn E, Huete A, Nagler P et al (2008) Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8:2136–2160

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ et al (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson E, Lennartsson T, Emanuelsson M (2007) Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biol Conserv 138:47–59

    Article  Google Scholar 

  • Hall FG, Bergen K, Blair JB et al (2011) Characterizing 3D vegetation structure from space: mission requirements. Remote Sens Environ 115:2753–2775

    Article  Google Scholar 

  • Helm A, Hanski I, Partel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    PubMed  Google Scholar 

  • Hobbs NT, Hilborn R (2006) Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol Appl 16:5–19

    Article  PubMed  Google Scholar 

  • Hofer G, Bunce RGH, Edwards PJ et al (2011) Use of topographic variability for assessing plant diversity in agricultural landscapes. Agric Ecosyst Environ 142:144–148

    Article  Google Scholar 

  • Hovd H (2008) Occurrence of meadow herbs in sown and unsown ploughed strips in cultivated grassland. Acta Agric. Scand. Sect B 58:208–215

    Google Scholar 

  • Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Klimek S, Kemmermann RA, Hofmann M et al (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570

    Article  Google Scholar 

  • Knappova J, Hemrova Munzbergova Z (2012) Colonization of central European abandoned fields by dry grassland species depends on the species richness of the source habitats: a new approach for measuring habitat isolation. Landscape Ecol 27:97–108

    Article  Google Scholar 

  • Krauss J, Klein AM, Steffan-Dewenter I et al (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv 13:1427–1439

    Article  Google Scholar 

  • Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and nonnative plant species richness. Ecology 87:3186–3199

    Article  PubMed  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Luth C, Tasser E, Niedrist G et al (2011) Plant communities of mountain grasslands in a broad cross-section of the Eastern Alps. Flora 206:433–443

    Article  Google Scholar 

  • MacArthur R, Wilson E (2001) The theory of island biogeography. Princeton University Press

  • MacDonald D, Crabtree JR, Wiesinger G et al (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manage 59:47–69

    Article  Google Scholar 

  • Marini L, Scotton M, Klimek S, Isselstein J, Pecile A (2007) Effects of local factors on plant species richness and composition of Alpine meadows. Agric Ecosyst Environ 119:281–288

    Article  Google Scholar 

  • Marini L, Scotton M, Klimek S et al (2008) Patterns of plant species richness in alpine hay meadows: local vs landscape controls. Basic Appl Ecol 9:365–372

    Article  Google Scholar 

  • Marini L, Fontana P, Klimek S et al (2009) Impact of farm size and topography on plant and insect diversity of managed grasslands in the Alps. Biol Conserv 142:394–403

    Article  Google Scholar 

  • Mathias Ö, Sara AO, Ove E (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 18:859–868

    Article  Google Scholar 

  • Maurer K, Weyand A, Fischer M et al (2006) Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biol Conserv 130:438–446

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) Fragstats: spatial pattern analysis program for categorical maps. Massachusetts University, Amherst

    Google Scholar 

  • Monteiro AT, Fava F, Hiltbrunner E et al (2011) Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landscape Urban Plann 100:287–294

    Article  Google Scholar 

  • Moser D, Dullinger S, Englisch T et al (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127

    Article  Google Scholar 

  • Neter JW, Kutner MH (1990) Applied linear statistical models. Burr Ridge, Illinois

    Google Scholar 

  • Niedrist G, Tasser E, Lüth C et al (2008) Plant diversity declines with recent land use changes in European Alps. Plant Ecol 202:195–210

    Article  Google Scholar 

  • ORNL-DAAC (2011) MODIS subsetted land products, Collection 5. ORNL DAAC

  • Pickett STA, Thompson JN (1978) Patch dynamics and the design of nature reserves. Biol Conserv 13:27–37

    Google Scholar 

  • Piedallu C, Gégout JC (2008) Efficient assessment of topographic solar radiation to improve plant distribution models. Agr Forest Meteorol 148:1696–1706

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Raatikainen KM, Heikkinen RK, Luoto M (2009) Relative importance of habitat area, connectivity, management and local factors for vascular plants: spring ephemerals in boreal semi-natural grasslands. Biodivers Conserv 18:1067–1085

    Article  Google Scholar 

  • Reitalu T, Johansson LJ, Sykes MT et al (2010) History matters: village distances, grazing and grassland species diversity. J Appl Ecol 47:1216–1224

    Article  Google Scholar 

  • Sitzia T, Trentanovi G (2012) Maggengo meadow patches enclosed by forests in the Italian Alps: evidence of landscape legacy on plant diversity. Biodivers Conserv 20:945–961

    Article  Google Scholar 

  • Sjöström M, Ardö J, Arneth A et al (2011) Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sens Environ 115:1081–1089

    Article  Google Scholar 

  • Smith AC, Koper N, Francis CM et al (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285

    Article  Google Scholar 

  • Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113

    Article  Google Scholar 

  • Spiegelberger T, Matthies D, Muller-Scharer H et al (2006) Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29:541–548

    Article  Google Scholar 

  • Steffan-Dewenter I, Munzenberg U, Burger C et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Google Scholar 

  • Strijker D (2005) Marginal lands in Europe - causes of decline. Basic Appl Ecol 6:99–106

    Article  Google Scholar 

  • Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21

    Article  Google Scholar 

  • Tasser E, Walde J, Tappeiner U et al (2007) Land-use changes and natural reforestation in the Eastern Central Alps. Agric Ecosyst Environ 118:115–129

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH et al (1993) A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecol 8:213–227

    Google Scholar 

  • Weibull AC, Ostman O, Granqvist A (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1335–1355

    Google Scholar 

Download references

Acknowledgments

We thank the cooperation of the local farmers during the field work. We acknowledge the project CAPPA and MIUR for their financial support of this project. We acknowledge Dr. Erika Hiltbrunner and Dr. Karen Budge for important insights to improve the manuscript, and the support of Euro-Mediterranean Centre on Climate Change during the last phase of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio T. Monteiro.

Appendix

Appendix

List of species recorded across the 34 selected meadow plots during the vegetation surveys in the lowlands of Valtellina Valley

Achillea millefolium

Erodium cicutarium

Potentilla reptans

Agropyron repens

Festuca arundinacea

Ranunculus acris

Agrostis tenuis

Festuca pratensis

Ranunculus bulbosus

Ajuga reptans

Festuca rubra aggr.

Ranunculus ficaria

Allium sp.

Galium mollugo aggr.

Ranunculus nemorosus

Alopecurus utriculatus

Geranium molle

Ranunculus repens

Anthoxanthum odoratum

Glechoma hederacea

Rumex acetosa

Arabidopsis thaliana

Heracleum sphondylium

Rumex obtusifolius

Arrhenatherum elatius

Holcus lanatus

Salvia pratensis

Artemisia vulgaris

Lamium album

Secale cereale

Avenula pube scens

Lamium maculatum

Silene dioica

Bellis perennis

Lamium purpureum

Silene vulgaris

Bromus hordeaceus

Leontodon hispidus

Stellaria graminea

Bromus sterilis

Leucanthemum vulgare

Stellaria media

Capsella bursa-pastoris

Lolium multiflorum

Taraxacum officinale

Cardamine hirsuta

Lolium perenne

Thalictrum minus

Cardaminopsis halleri

Lotus corniculatus

Trifolium pratense

Carex pairaei

Lychnis flos-cuculi

Trifolium repens

Carum carvi

Medicago sativa

Trisetum flavescens

Centaurea nigrescens

Myosotis ramosissima

Urtica dioica

Cerastium glomeratum

Ornithogalum umbellatum

Valerianella locusta

Cerastium holosteoides

Pastinaca sativa

Veronica arvensis

Chenopodium album

Phleum prate nse

Veronica chamaedrys

Clinopodium vulgare

Pimpinella major

Veronica filiformis

Convolvulus arvensis

Plantago lanceo lata

Veronica persica

Crepis biennis

Plantago major

Vicia cracca

Dactylis glome rata

Poa prate nsis

Vicia sativa

Daucus carota

Poa trivialis

Viola tricolor

Erigeron annuus

Polygonum aviculare

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, A.T., Fava, F., Gonçalves, J. et al. Landscape context determinants to plant diversity in the permanent meadows of Southern European Alps. Biodivers Conserv 22, 937–958 (2013). https://doi.org/10.1007/s10531-013-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0460-1

Keywords

Navigation