Biodiversity and Conservation

, Volume 22, Issue 2, pp 459–482 | Cite as

Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?

  • Raimo VirkkalaEmail author
  • Risto K. Heikkinen
  • Stefan Fronzek
  • Heini Kujala
  • Niko Leikola
Original Paper


Species ranges are expected to move polewards following the changing climate, which poses novel challenges to the protected area network, particularly at northern latitudes. Here we study how well protected areas are likely to sustain populations of birds of conservation concern under a changing climate in northern Europe, in Finland. We fitted bioclimatic envelope models generated for 100 bird species to climate scenario data for the years 2051–2080 and three alternative emission scenarios in a 10-km grid system to predict changes in the species probability of occurrence. We related the projected changes in the climatic suitability to the amount of protected preferred habitat for the study species in the 10-km grid cells, and based on the cover of four main CORINE Land Cover classes in each conservation area in Finland. The probability of occurrence of all species (except marshland birds) decreased according to all scenarios, the decline being greatest in southern and smallest in northern boreal zones. This decline was slightly greater in unprotected than in protected areas for species of forests, mires and mountain habitats. The climatically suitable areas for the species were predicted to shift northwards, but the potential gain of southern species of conservation concern appears not to compensate for the loss of northern species. Thus, a representative protected area network is needed in all boreal zones. Overall, our results show that species-specific habitat preferences and habitat availability should be taken into account when assessing the efficiency of a protected area network in a changing climate.


Climate change Habitat availability Protected area network Range shift Species of conservation concern 



Richard D. Gregory and the British Trust for Ornithology are greatly acknowledged for providing us with the European Bird Atlas data. The work was part of the A-LA-CARTE project led by Tim Carter in the Research Programme on Climate Change (FICCA) of the Academy of Finland. The comments of two anonymous reviewers are acknowledged.

Supplementary material

10531_2012_423_MOESM1_ESM.doc (116 kb)
Supplementary material 1 (DOC 116 kb)


  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Alagador D, Martins MJ, Cerdeira JO, Cabeza M, Araújo MB (2011) A probability-based approach to match species with reserves when data are at different resolutions. Biol Conserv 144:811–820. doi: 10.1016/j.biocon.2010.11.011 CrossRefGoogle Scholar
  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  4. Araújo MB (2004) Matching species with reserves—uncertainties from using data at different resolutions. Biol Conserv 118:533–538. doi: 10.1016/j.biocon.2003.10.006 CrossRefGoogle Scholar
  5. Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Chang Biol 10:1618–1626. doi: 10.1111/j.1365-2486.2004.00828.x CrossRefGoogle Scholar
  6. Araújo MB, Alagador D, Cabeza M, Nogues-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi: 10.1111/j.1461-0248.2011.01610.x PubMedCrossRefGoogle Scholar
  7. Austin MP, Belbin L, Meyers JA, Doherty MD, Luoto M (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Model 199:197–216. doi: 10.1016/j.ecolmodel.2006.05.023 CrossRefGoogle Scholar
  8. Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Chang Biol 18:881–890. doi: 10.1111/j.1365-2486.2011.02552.x CrossRefGoogle Scholar
  9. Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Glob Chang Biol 8:954–971. doi: 10.1046/j.1365-2486.2002.00490.x CrossRefGoogle Scholar
  10. BirdLife International (2004a) Birds in Europe: population estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  11. BirdLife International (2004b) Birds in the European Union: a status assessment. BirdLife International, Wageningen ( Accessed 25 July 2012
  12. Brommer JE, Lehikoinen A, Valkama J (2012) The breeding ranges of Central European and Arctic bird species move poleward. PLoS ONE 7(9):e43648. doi: 10.1371/journal.pone.0043648 PubMedCrossRefGoogle Scholar
  13. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi: 10.1126/science.1206432 PubMedCrossRefGoogle Scholar
  14. Coetzee BWT, Robertson MP, Erasmus BFN, van Rensburg BJ, Thuiller W (2009) Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob Ecol Biogeogr 18:701–710. doi: 10.1111/j.1466-8238.2009.00485.x CrossRefGoogle Scholar
  15. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. doi: 10.1016/0034-4257(91)90048-B CrossRefGoogle Scholar
  16. Denoel M, Ficetola GF (2008) Conservation of newt guilds in an agricultural landscape of Belgium: the importance of aquatic and terrestrial habitats. Aquat Conserv-Mar Freshw Ecosyst 18:714–728. doi: 10.1002/aqc.853 CrossRefGoogle Scholar
  17. Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc R Soc B-Biol Sci 276:1449–1457. doi: 10.1098/rspb.2008.1801 CrossRefGoogle Scholar
  18. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  19. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x PubMedCrossRefGoogle Scholar
  20. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi: 10.1017/S0376892997000088 CrossRefGoogle Scholar
  21. Forsman JT, Mönkkönen M (2003) The role of climate in limiting European resident bird populations. J Biogeogr 30:55–70. doi: 10.1046/j.1365-2699.2003.00812.x CrossRefGoogle Scholar
  22. Garcia RA, Burgess ND, Cabeza M, Rahbek C, Araújo MB (2012) Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob Chang Biol 18:1253–1269. doi: 10.1111/j.1365-2486.2011.02605.x CrossRefGoogle Scholar
  23. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  24. Hagemeijer WJM, Blair MJ (eds) (1997) The EBCC atlas of European breeding birds: their distribution and abundance. T & A D Poyser, LondonGoogle Scholar
  25. Hannah L, Salm R (2005) Protected area management in a changing climate. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 363–371Google Scholar
  26. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. doi: 10.1890/1540-9295(2007)5 CrossRefGoogle Scholar
  27. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  28. Heath MF, Evans MI (eds) (2000) Important bird areas in Europe: priority sites for conservation. 2 vols. BirdLife International (BirdLife Conservation Series No. 8), CambridgeGoogle Scholar
  29. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006a) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777. doi: 10.1177/0309133306071957 CrossRefGoogle Scholar
  30. Heikkinen RK, Luoto M, Virkkala R (2006b) Does seasonal fine-tuning of climatic variables improve the performance of bioclimatic envelope models for migratory birds? Divers Distrib 12:502–510. doi: 10.1111/j.1366-9516.2006.00284.x CrossRefGoogle Scholar
  31. Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35:276–288. doi: 10.1111/j.1600-0587.2011.06999.x CrossRefGoogle Scholar
  32. Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kuhn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63. doi: 10.1111/j.1466-8238.2010.00613.x CrossRefGoogle Scholar
  33. Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539. doi: 10.1111/j.1523-1739.2006.00609.x PubMedCrossRefGoogle Scholar
  34. Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B (2009) Projected impacts of climate change on a continent-wide protected area network. Ecol Lett 12:420–431. doi: 10.1111/j.1461-0248.2009.01297.x PubMedCrossRefGoogle Scholar
  35. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durham University, The RSPB and Lynx Edicions, BarcelonaGoogle Scholar
  36. Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climate change on European breeding birds. PLoS ONE 3(1):e1439. doi: 10.1371/journal.pone.0001439 PubMedCrossRefGoogle Scholar
  37. IPCC (2007) Climate Change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri, R.K., Reisinger, A., (eds.)]. IPCC, Geneva, p 104Google Scholar
  38. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219. doi: 10.1371/journal.pbio.0050157 CrossRefGoogle Scholar
  39. Jylhä K, Tuomenvirta H, Ruosteenoja K (2004) Climate change projections for Finland during the 21st century. Boreal Environ Res 9:127–152Google Scholar
  40. Kujala H, Araújo MB, Thuiller W, Cabeza M (2011) Misleading results from conventional gap analysis—messages from the warming north. Biol Conserv 144:2450–2458. doi: 10.1016/j.biocon.2011.06.023 CrossRefGoogle Scholar
  41. Landis J, Koch G (1977) The measurement of observer agreement for categorial data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  42. Lehmann A, Overton JM, Leathwick JR (2003) GRASP: generalized regression analysis and spatial prediction (vol 157, pg 189, 2002). Ecol Model 160:165–183. doi: 10.1016/S0304-3800(02)00354-X CrossRefGoogle Scholar
  43. Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi: 10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  44. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. doi: 10.1038/nature08649 PubMedCrossRefGoogle Scholar
  45. Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model 220:3512–3520. doi: 10.1016/j.ecolmodel.2008.10.019 CrossRefGoogle Scholar
  46. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, New YorkGoogle Scholar
  47. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/bams-88-9-1383 CrossRefGoogle Scholar
  48. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  49. Moen J, Aune K, Edenius L, Angerbjörn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9(1):16Google Scholar
  50. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25. doi: 10.3354/cr021001 CrossRefGoogle Scholar
  51. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  52. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245. doi: 10.1016/S0304-3800(00)00322-7 CrossRefGoogle Scholar
  53. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  54. Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298. doi: 10.1111/j.0906-7590.2004.03740.x CrossRefGoogle Scholar
  55. Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi: 10.1126/science.1196624 PubMedCrossRefGoogle Scholar
  56. Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Chang Biol 9:647–655. doi: 10.1046/j.1365-2486.2003.00616.x CrossRefGoogle Scholar
  57. Rassi P, Alanen A, Kanerva T, Mannerkoski I (eds) (2001) The 2000 red list of Finnish species (In Finnish with an English summary). Ympäristöministeriö & Suomen ympäristökeskus, HelsinkiGoogle Scholar
  58. Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (eds) (2010) The 2010 red list of Finnish species. Ympäristöministeriö & Suomen ympäristökeskus, HelsinkiGoogle Scholar
  59. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181Google Scholar
  60. Şekercioğlu Ç, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18. doi: 10.1016/j.biocon.2011.10.019 CrossRefGoogle Scholar
  61. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi: 10.1126/science.3287615 PubMedCrossRefGoogle Scholar
  62. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi: 10.1038/nature02121 PubMedCrossRefGoogle Scholar
  63. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x CrossRefGoogle Scholar
  64. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027. doi: 10.1111/j.1365-2486.2004.00859.x CrossRefGoogle Scholar
  65. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005a) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. doi: 10.1073/pnas.0409902102 PubMedCrossRefGoogle Scholar
  66. Thuiller W, Lavorel S, Araújo MB (2005b) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357. doi: 10.1111/j.1466-822x.2005.00162.x CrossRefGoogle Scholar
  67. Thuiller W, Lafourcade B, Engler B, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x CrossRefGoogle Scholar
  68. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc London B-Biol Sci 270:467–473. doi: 10.1098/rspb.2002.2246 CrossRefGoogle Scholar
  69. Triviño M, Thuiller W, Cabeza M, Hickler T (2011) The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds. PLoS ONE 6(12):e29373. doi: 10.1371/journal.pone0029373 PubMedCrossRefGoogle Scholar
  70. Väisänen RA, Lammi E, Koskimies P (1998) Distribution, numbers and population changes of Finnish breeding birds (In Finnish with an English summary). Otava, HelsinkiGoogle Scholar
  71. Valkama J, Vepsäläinen V, Lehikoinen A (2011) The third Finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment, Helsinki ( Accessed 1 Aug 2012
  72. Virkkala R, Rajasärkkä A (2007) Uneven regional distribution of protected areas in Finland: consequences for boreal forest bird populations. Biol Conserv 134:361–371. doi: 10.1016/j.biocon.2006.08.006 CrossRefGoogle Scholar
  73. Virkkala R, Rajasärkkä A (2011) Northward density shift of bird species in boreal protected areas due to climate change. Boreal Environ Res 16 (suppl. B):2–13Google Scholar
  74. Virkkala R, Toivonen H (1999) Maintaining biological diversity in Finnish forests. Finnish Environ 278:1–50Google Scholar
  75. Virkkala R, Rajasärkkä A, Väisänen RA, Vickholm M, Virolainen E (1994) The significance of protected areas for the land birds of southern Finland. Conserv Biol 8:532–544. doi: 10.1046/j.1523-1739.1994.08020532.x CrossRefGoogle Scholar
  76. Virkkala R, Korhonen KT, Haapanen R, Aapala K (2000) Protected forests and mires in forest and mire vegetation zones in Finland based on the 8th National Forest Inventory (In Finnish with an English summary). Finnish Environ 395:1–49Google Scholar
  77. Virkkala R, Luoto M, Heikkinen RK, Leikola N (2005) Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. J Biogeogr 32:1957–1970. doi: 10.1111/j.1365-2699.2005.01326.x CrossRefGoogle Scholar
  78. Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353. doi: 10.1016/j.biocon.2008.03.007 CrossRefGoogle Scholar
  79. Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol 36:269–281. doi: 10.1016/j.actao.2010.01.006 CrossRefGoogle Scholar
  80. Zuckerberg B, Woods AM, Porter WF (2009) Poleward shifts in breeding bird distributions in New York State. Glob Chang Biol 15:1866–1883. doi: 10.1111/j.1365-2486.2009.01878.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Raimo Virkkala
    • 1
    Email author
  • Risto K. Heikkinen
    • 1
  • Stefan Fronzek
    • 2
  • Heini Kujala
    • 3
  • Niko Leikola
    • 4
  1. 1.Ecosystem Change Unit, Natural Environment CentreFinnish Environment InstituteHelsinkiFinland
  2. 2.Climate Change ProgrammeFinnish Environment InstituteHelsinkiFinland
  3. 3.Metapopulation Research Group, Department of BiosciencesUniversity of HelsinkiUniversity of HelsinkiFinland
  4. 4.Biodiversity Unit, Natural Environment CentreFinnish Environment InstituteHelsinkiFinland

Personalised recommendations